深度学习笔记之受限玻尔兹曼机(一)玻尔兹曼分布介绍

机器学习笔记之受限玻尔兹曼机——玻尔兹曼分布介绍

引言

从本节开始,将介绍受限玻尔兹曼机。本节将从马尔可夫随机场开始,介绍玻尔兹曼机分布

回顾:Hammersley-Clifford定理

概率图模型——马尔可夫随机场的结构表示中介绍了马尔可夫随机场(Markov Random Field,MRF)以及它的因子分解证明。该证明本质上是基于Hammersley-Clifford定理的表示。Hammersley-Clifford定理主要包含两个部分:

  • 定义1:一个马尔可夫随机场 G \mathcal G G,如果如果两个结点 i j , i k i_j,i_k ij,ik观测结点 O \mathcal O O阻断,那么 i k , i k i_k,i_k ik,ik基于 O \mathcal O O条件独立
    这里说的‘阻断’是指‘给定观测结点’ O \mathcal O O并作为条件。
    i j ⊥ i k ∣ O ⇒ P ( i j , i k ∣ O ) = P ( i j ∣ O ) ⋅ P ( i k ∣ O ) i_j \perp i_k \mid \mathcal O \Rightarrow \mathcal P(i_j ,i_k \mid \mathcal O) = \mathcal P(i_j \mid \mathcal O) \cdot \mathcal P(i_k \mid \mathcal O) ijikOP(ij,ikO)=P(ijO)P(ikO)
    对应概率图结构表示如下:
    这实际上就是‘全局马尔可夫性’(Global Markov Property),局部马尔可夫性、成对马尔可夫性均是由此转化而来。
    Hammersley-Clifford定理-示例1

  • 定义2:马尔可夫随机场 G \mathcal G G中关于随机变量集合 X \mathcal X X的联合概率分布 P ( X ) \mathcal P(\mathcal X) P(X)能够将因子分解定义在基于团(Clique)上的恒正函数的乘积,并且这些团覆盖了 G \mathcal G G中所有的结点和边。即:
    P ( X ) = 1 Z ∏ i = 1 K ψ i ( x C i ) \mathcal P(\mathcal X) = \frac{1}{\mathcal Z} \prod_{i=1}^\mathcal K \psi_i(x_{\mathcal C_i}) P(X)=Z1i=1Kψi(xCi)

    其中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值