前言
Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序都可以使用线程池。
在开发过程中,合理地使用线程池能够带来3个好处。
- 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
- 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
- 提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。但是,要做到合理利用线程池,必须对其实现原理了如指掌。
线程池的实现原理
当向线程池提交一个任务之后,线程池是如何处理这个任务的呢?
本文来看一下线程池的主要处理流程,处理流程图下图所示。
线程池的主要处理流程
从图中可以看出,当提交一个新任务到线程池时,线程池的处理流程如下。
- 线程池判断核心线程池里的线程是否都在执行任务。如果不是,则创建一个新的工作线程来执行任务。如果核心线程池里的线程都在执行任务,则进入下个流程。
- 线程池判断工作队列是否已经满。如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。
- 线程池判断线程池的线程是否都处于工作状态。如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。
ThreadPoolExecutor
执行 execute()
方法的示意图如下:
ThreadPoolExecutor执行示意图
ThreadPoolExecutor
执行execute
方法分下面4种情况:
- 如果当前运行的线程少于
corePoolSize
,则创建新线程来执行任务(注意,执行这一步骤需要获取全局锁)。上图1
- 如果运行的线程等于或多于
corePoolSize
,则将任务加入BlockingQueue
。上图2
- 如果无法将任务加入
BlockingQueue
(队列已满),则创建新的线程来处理任务(注意,执行这一步骤需要获取全局锁)。上图3
- 如果创建新线程将使当前运行的线程超出
maximumPoolSize
,任务将被拒绝,并调用RejectedExecutionHandler.rejectedExecution()
方法。上图4
ThreadPoolExecutor
采取上述步骤的总体设计思路,是为了在执行execute()
方法时,尽可能地避免获取全局锁(那将会是一个严重的可伸缩瓶颈)。在ThreadPoolExecutor
完成预热之后(当前运行的线程数大于等于corePoolSize
),几乎所有的execute()
方法调用都是执行 上图2
,而 上图2
不需要获取全局锁。
-
源码分析:上面的流程分析让我们很直观地了解了线程池的工作原理,让我们再通过源代码来看看是如何实现的,线程池执行任务的方法如下:
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); if (workerCountOf(c) < corePoolSize) { // 如果线程数小于基本线程数,则创建线程并执行当前任务 if (addWorker(command, true)) return; c = ctl.get(); } // 如线程数大于等于基本线程数或线程创建失败,则将当前任务放到工作队列中。 if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (!isRunning(recheck) && remove(command)) reject(command); else if (workerCountOf(recheck) == 0) addWorker(null, false); } else if (!addWorker(command, false)) // 如果线程池不处于运行中或任务无法放入队列, //并且当前线程数量小于最大允许的线程数量,则创建一个线程执行任务. // 抛出RejectedExecutionException异常 reject(command); }
-
工作线程:线程池创建线程时,会将线程封装成工作线程
Worker
,Worker
在执行完任务后,还会循环获取工作队列里的任务来执行。我们可以从Worker
类的run()
方法里看到这点。public void run() { try { Runnable task = firstTask; firstTask = null; while (task != null || (task = getTask()) != null) { runTask(task); task = null; } } finally { workerDone(this); } }
ThreadPoolExecutor
中线程执行任务的示意图如下:
ThreadPoolExecutor中线程执行任务的示意图
线程池中的线程执行任务分两种情况:
- 在
execute()
方法中创建一个线程时,会让这个线程执行当前任务。 - 这个线程执行完
上图中1
的任务后,会反复从BlockingQueue
获取任务来执行。
线程池的使用
线程池的创建
我们可以通过ThreadPoolExecutor
来创建一个线程池。
ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime,
unit, workQueue, threadFactory, handler);
创建一个线程池时需要输入几个参数:
-
corePoolSize
(线程池的基本大小):当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。
如果调用了线程池的prestartAllCoreThreads()
方法,线程池会提前创建并启动所有基本线程。 -
maximumPoolSize
(线程池最大数量):线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是,如果使用了无界的任务队列这个参数就没什么效果。 -
keepAliveTime
(线程活动保持时间):线程池的工作线程空闲后,保持存活的时间。所以,如果任务很多,并且每个任务执行的时间比较短,可以调大时间,提高线程的利用率。 -
TimeUnit
(线程活动保持时间的单位),可选的单位有:- 天(
DAYS
) - 小时(
HOURS
) - 分钟(
MINUTES
) - 毫秒(
MILLISECONDS
) - 微秒(
MICROSECONDS
,千分之一毫秒) - 纳秒(
NANOSECONDS
,千分之一微秒)
- 天(
-
workQueue
(任务队列):用于保存等待执行的任务的阻塞队列。
可以选择以下几个阻塞队列:ArrayBlockingQueue
:是一个基于数组结构的有界阻塞队列,此队列按FIFO
(先进先出)原则对元素进行排序。LinkedBlockingQueue
:一个基于链表结构的阻塞队列,此队列按FIFO
排序元素,吞吐量通常要高于ArrayBlockingQueue
。静态工厂方法Executors.newFixedThreadPool()
使用了这个队列。SynchronousQueue
:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue
,静态工厂方法Executors.newCachedThreadPool
使用了这个队列。PriorityBlockingQueue
:一个具有优先级的无限阻塞队列。
-
ThreadFactory
:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字。使用开源框架guava
提供的ThreadFactoryBuilder
可以快速给线程池里的线程设置有意义的名字,代码如下:new ThreadFactoryBuilder().setNameFormat("XX-task-%d").build();
-
RejectedExecutionHandler
(饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy
,表示无法处理新任务时抛出异常。在JDK 1.5中Java线程池框架提供了以下4种策略。AbortPolicy
:直接抛出异常。CallerRunsPolicy
:只用调用者所在线程来运行任务。DiscardOldestPolicy
:丢弃队列里最近的一个任务,并执行当前任务。DiscardPolicy
:不处理,丢弃掉。
当然,也可以根据应用场景需要来实现
RejectedExecutionHandler
接口自定义策略。如记录日志或持久化存储不能处理的任务。
向线程池提交任务
可以使用两个方法向线程池提交任务,分别为execute()
和submit()
方法。
execute()
方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功。通过以下代码可知execute()
方法输入的任务是一个Runnable
类的实例。threadsPool.execute(new Runnable() { @Override public void run() { // TODO Auto-generated method stub } });
submit()
方法用于提交需要返回值的任务。线程池会返回一个future
类型的对象,通过这个future
对象可以判断任务是否执行成功,并且可以通过future
的get()
方法来获取返回值,get()
方法会阻塞当前线程直到任务完成,而使用get(long timeout,TimeUnit unit)
方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。Future<Object> future = executor.submit(harReturnValuetask); try { Object s = future.get(); } catch (InterruptedException e) { // 处理中断异常 } catch (ExecutionException e) { // 处理无法执行任务异常 } finally { // 关闭线程池 executor.shutdown(); }
关闭线程池
可以通过调用线程池的shutdown
或shutdownNow
方法来关闭线程池。
它们的原理是遍历线程池中的工作线程,然后逐个调用线程的interrupt
方法来中断线程,所以无法响应中断的任务可能永远无法终止。
但是它们存在一定的区别:
shutdownNow
首先将线程池的状态设置成STOP
,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表,shutdown
只是将线程池的状态设置成SHUTDOWN
状态,然后中断所有没有正在执行任务的线程。
只要调用了这两个关闭方法中的任意一个,isShutdown
方法就会返回true
。当所有的任务都已关闭后,才表示线程池关闭成功,这时调用isTerminaed
方法会返回true
。
至于应该调用哪一种方法来关闭线程池,应该由提交到线程池的任务特性决定:
- 通常调用
shutdown
方法来关闭线程池。 - 如果任务不一定要执行完,则可以调用
shutdownNow
方法。
合理地配置线程池
要想合理地配置线程池,就必须首先分析任务特性,可以从以下几个角度来分析:
- 任务的性质:CPU密集型任务、IO密集型任务和混合型任务。
- 任务的优先级:高、中和低。
- 任务的执行时间:长、中和短。
- 任务的依赖性:是否依赖其他系统资源,如数据库连接。
性质不同的任务可以用不同规模的线程池分开处理。
CPU密集型任务
应配置尽可能小的线程,如配置Ncpu+1
个线程的线程池。IO密集型任务
线程并不是一直在执行任务,则应配置尽可能多的线程,如2*Ncpu
。混合型的任务
,如果可以拆分,将其拆分成一个CPU密集型任务
和一个IO密集型任务
:- 两个任务执行的时间相差不是太大,那么分解后执行的吞吐量将高于串行执行的吞吐量。
- 两个任务执行时间相差太大,则没必要进行分解。
可以通过Runtime.getRuntime().availableProcessors()
方法获得当前设备的CPU
个数。
优先级不同的任务可以使用优先级队列PriorityBlockingQueue
来处理。它可以让优先级高的任务先执行。
注意:如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。
执行时间不同的任务可以交给不同规模的线程池来处理,或者可以使用优先级队列,让
执行时间短的任务先执行。
依赖数据库连接池的任务,因为线程提交SQL后 需要等待数据库返回结果,等待的时间越长,则CPU空闲时间就越长,那么线程数应该设置得越大,这样才能更好地利用CPU。
建议使用有界队列。有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点儿,比如几千。
有一次,我们系统里后台任务线程池的队列和线程池全满了,不断抛出抛弃任务的异常,通过排查发现是数据库出现了问题,导致执行SQL变得非常缓慢,因为后台任务线程池里的任务全是需要向数据库查询和插入数据的,所以导致线程池里的工作线程全部阻塞,任务积压在线程池里。如果当时我们设置成无界队列,那么线程池的队列就会越来越多,有可能会撑满内存,导致整个系统不可用,而不只是后台任务出现问题。当然,我们的系统所有的任务是用单独的服务器部署的,我们使用不同规模的线程池完成不同类型的任务,但是出现这样问题时也会影响到其他任务。
线程池的监控
如果在系统中 大量使用线程池,则有必要 对线程池进行监控,方便在出现问题时,可以根据线程池的使用状况快速定位问题。可以通过线程池提供的参数进行监控,在监控线程池的时候可以使用以下属性:
taskCount
:线程池需要执行的任务数量。completedTaskCount
:线程池在运行过程中已完成的任务数量,小于或等于taskCount
。largestPoolSize
:线程池里曾经创建过的最大线程数量。通过这个数据可以知道线程池是否曾经满过。如该数值等于线程池的最大大小,则表示线程池曾经满过。getPoolSize
:线程池的线程数量。如果线程池不销毁的话,线程池里的线程不会自动销毁,所以这个大小只增不减。getActiveCount
:获取活动的线程数。
通过扩展线程池进行监控。
可以通过继承线程池来自定义线程池,重写线程池的beforeExecute
、afterExecute
和terminated
方法,也可以在任务执行前、执行后和线程池关闭前执行一些代码来进行监控。
例如,监控任务的平均执行时间
、最大执行时间
和 最小执行时间
等。这几个方法在线程池里是空方法。
protected void beforeExecute(Thread t, Runnable r) { }
小结
本文我们介绍了:
- 线程池的原理
- 线程池的创建
ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime,unit, workQueue, threadFactory, handler);
- 向线程池提交任务
execute()
和submit()
- 关闭线程池
shutdown
或shutdownNow
- 线程池的合里配置
- 线程池的监控
链接:https://www.jianshu.com/p/13c82f1a7ad9