10-I 斐波那契数列
题目
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:1示例 2:
输入:n = 5
输出:5
思路
动态规化: 时间复杂度O(n),空间复杂度O(1)
class Solution {
public:
int fib(int n) {
if(n<1) {
return 0;
}
int f1=0;
int f2=1;
for (size_t i = 2; i <=n; i++)
{
int tmp=f2;
f2=(f1+f2)%1000000007;
f1=tmp;
}
return f2;
}
};
10-II 青蛙跳台阶问题
题目
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2示例 2:
输入:n = 7
输出:21提示:
0 <= n <= 100
思路
f(n)总方法分为两种:
- 最后一次跳了一级台阶,这类方法共有f(n-1)种;
- 最后一次跳了两级台阶,这类方法共有f(n-2)种
/ 1 n=1
f(n)= 2 n=2
\ f(n-1)+(f-2) n>2
class Solution {
public:
int numWays(int n) {
if(n==0){
return 1;
}
if(n<2){
return n;
}
int f1=1;
int f2=2;
for (size_t i = 3; i <=n; i++)
{
int tmp=f2;
f2=(f1+f2)%1000000007;
f1=tmp;
}
return f2;
}
};
149

被折叠的 条评论
为什么被折叠?



