NLP自然语言处理-英文文本电影影评分类2-pytorch版本

本篇博客继续探讨英文电影影评分类,使用PyTorch进行自然语言处理。通过分词处理数据集,并保存为pkl模型。数据集包含124020条评论,根据后缀数字区分积极和消极影评。已提供代码示例,创建数据模型。请关注、点赞以支持更新。
摘要由CSDN通过智能技术生成

上一篇介绍了数据集制作,但又没完全介绍。这篇将数据集文本进行分词保存pkl模型

imdb共有124020个数据,用于训练影评是积极(pos)话说消极(neg)的。消极文本的命名是在“_”后缀数字都是小于5的,反之不小于5的后缀命名是积极的评论文本。

 代码如下:

# -*-coding:utf-8-*-
import pickle
from tqdm import tqdm
import dataset
from torch.utils.data import DataLoader

class Vocab:
    UNK_TAG = "<UNK>"  # 表示未知字符
    PAD_TAG = "<PAD>"  # 填充符
    PAD = 0
    UNK = 1

    def __init__(self):
        self.dict = {  # 保存
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bug生成中

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值