上一篇介绍了数据集制作,但又没完全介绍。这篇将数据集文本进行分词保存pkl模型
imdb共有124020个数据,用于训练影评是积极(pos)话说消极(neg)的。消极文本的命名是在“_”后缀数字都是小于5的,反之不小于5的后缀命名是积极的评论文本。


代码如下:
# -*-coding:utf-8-*-
import pickle
from tqdm import tqdm
import dataset
from torch.utils.data import DataLoader
class Vocab:
UNK_TAG = "<UNK>" # 表示未知字符
PAD_TAG = "<PAD>" # 填充符
PAD = 0
UNK = 1
def __init__(self):
self.dict = { # 保存
本篇博客继续探讨英文电影影评分类,使用PyTorch进行自然语言处理。通过分词处理数据集,并保存为pkl模型。数据集包含124020条评论,根据后缀数字区分积极和消极影评。已提供代码示例,创建数据模型。请关注、点赞以支持更新。
订阅专栏 解锁全文
781

被折叠的 条评论
为什么被折叠?



