《Python深度学习》
文章平均质量分 94
象话
有任何疑问/合作都可联系我
v:jj915870916
展开
-
深度学习示例2-多输入多输出的神经网络模型
输入层:titletext_bodytags是三个输入层,分别代表文章的标题、正文和标签。它们被定义为层,其中shape参数指定了输入数据的维度。这里有一个需要注意的地方,通常文本数据(如标题和正文)不会直接以词汇表大小()作为输入维度,而是需要先经过嵌入层(Embedding Layer)转换为固定大小的密集向量。不过,为了简化示例,这里直接使用了词汇表大小作为输入维度。特征合并:使用层将三个输入的特征合并成一个单一的张量。隐藏层:通过一个具有64个单元和ReLU激活函数的Dense。原创 2024-09-04 13:25:46 · 1146 阅读 · 0 评论 -
深度学习示例1-全零通道的 MNIST 数据训练模型
是一个常用的损失函数,特别是当目标变量是整数编码的类别索引时(即,不是one-hot编码的)。它对于许多不同的问题都是一个很好的选择,因为它自动调整学习率,并且对于不同的参数可以有不同的学习率。模型非常适合于构建简单的堆叠模型,但如果你需要构建更复杂的模型(例如,具有多个输入或输出的模型,或者层之间具有跳过连接的模型),则可能需要使用。当你调用这个方法时,你正在告诉模型使用给定的数据(输入和标签)进行训练,以及训练过程中的一些关键参数。参数仅在模型的第一层中指定,它定义了输入数据的形状(不包括批量大小)。原创 2024-08-29 17:12:00 · 451 阅读 · 0 评论 -
《Python深度学习》阅读笔记
深度学习之“深度”并不是说这种方法能够获取更深层次的理解,而是指一系列连续的表示层。深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层中学习,这些层对应于越来越有意义的表示。对于图中从 A 到 B 的每条边,我们都画一条从 B 到 A 的反向边,在深度学习中,这些分层表示是通过叫作神经网络( neural network)的模型学习得到的。一些核心概念是从人们对大脑(特别是视觉皮层)的理解中汲取部分灵感而形成的,但深度学。这个反向图表示的是反向传播过程。原创 2024-03-15 11:25:24 · 1154 阅读 · 1 评论
分享