象话
码龄9年
关注
提问 私信
  • 博客:478,233
    社区:144
    问答:497
    478,874
    总访问量
  • 85
    原创
  • 18,400
    排名
  • 3,475
    粉丝
  • 126
    铁粉

个人简介:有任何疑问/合作都可联系我 v:jj915870916

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2016-05-06
博客简介:

象话的博客

查看详细资料
  • 原力等级
    当前等级
    5
    当前总分
    1,125
    当月
    10
个人成就
  • 获得282次点赞
  • 内容获得108次评论
  • 获得477次收藏
  • 代码片获得1,703次分享
创作历程
  • 13篇
    2024年
  • 13篇
    2023年
  • 4篇
    2022年
  • 15篇
    2021年
  • 7篇
    2020年
  • 6篇
    2019年
  • 20篇
    2018年
  • 14篇
    2017年
成就勋章
TA的专栏
  • 虚拟机
    1篇
  • 《Python深度学习》
    3篇
  • Redis
    3篇
  • flink
    1篇
  • 信创
    1篇
  • 设计模式
    4篇
  • 大数据
    1篇
  • 项目管理规范
    2篇
  • emqx
    1篇
  • K8S
    7篇
  • Netty
    3篇
  • leedcode刷题
    1篇
  • vue
    1篇
  • 读书而得
    1篇
  • Java工具
    12篇
  • echarts
    1篇
  • Python
    6篇
  • 《Python网络数据采集》
    4篇
  • MySQL数据库
    6篇
  • Java框架
    7篇
  • Java源码解读
    3篇
  • docker
    7篇
  • angular4
    1篇
  • 阶段总结
  • Linux
    2篇
  • 其他
    4篇
  • 《Byte-of-python》
    3篇
  • 《spring实战(第四版)》
    1篇
  • JVM
    2篇
  • 思考
    2篇
兴趣领域 设置
  • Java
    javaspring cloudsentineljava-rocketmq
  • 人工智能
    机器学习深度学习
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 关注/订阅/互动
搜TA的内容
搜索 取消

Window子系统技术WSL使用详情

WSL(Windows Subsystem for Linux)是微软为Windows操作系统开发的一个子系统,允许用户在Windows环境中直接运行Linux的命令行工具、应用程序及系统服务,而无需启动完整的Linux虚拟机或进行双系统启动。
原创
发布博客 2024.11.20 ·
863 阅读 ·
24 点赞 ·
0 评论 ·
18 收藏

maven打jar包知识-运行包、依赖包、传递性

​在使用Java和Maven等工具时,经常会遇到jar运行包和依赖包的概念。
原创
发布博客 2024.11.04 ·
531 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

深度学习示例3-卷积神经网络(猫狗大战)_数据增强

这行代码将输入层和输出层连接起来,定义了整个模型。现在,模型已经准备好进行编译、训练和评估了。这个模型是一个典型的卷积神经网络,它使用了卷积层来提取图像特征,最大池化层来减少特征图的维度,展平层来将特征图转换为一维数组,全连接层来根据提取的特征进行分类,并使用dropout来防止过拟合。
原创
发布博客 2024.10.18 ·
1001 阅读 ·
24 点赞 ·
0 评论 ·
11 收藏

深度学习示例2-多输入多输出的神经网络模型

输入层:titletext_bodytags是三个输入层,分别代表文章的标题、正文和标签。它们被定义为层,其中shape参数指定了输入数据的维度。这里有一个需要注意的地方,通常文本数据(如标题和正文)不会直接以词汇表大小()作为输入维度,而是需要先经过嵌入层(Embedding Layer)转换为固定大小的密集向量。不过,为了简化示例,这里直接使用了词汇表大小作为输入维度。特征合并:使用层将三个输入的特征合并成一个单一的张量。隐藏层:通过一个具有64个单元和ReLU激活函数的Dense。
原创
发布博客 2024.09.04 ·
1146 阅读 ·
19 点赞 ·
0 评论 ·
11 收藏

深度学习示例1-全零通道的 MNIST 数据训练模型

是一个常用的损失函数,特别是当目标变量是整数编码的类别索引时(即,不是one-hot编码的)。它对于许多不同的问题都是一个很好的选择,因为它自动调整学习率,并且对于不同的参数可以有不同的学习率。模型非常适合于构建简单的堆叠模型,但如果你需要构建更复杂的模型(例如,具有多个输入或输出的模型,或者层之间具有跳过连接的模型),则可能需要使用。当你调用这个方法时,你正在告诉模型使用给定的数据(输入和标签)进行训练,以及训练过程中的一些关键参数。参数仅在模型的第一层中指定,它定义了输入数据的形状(不包括批量大小)。
原创
发布博客 2024.08.29 ·
451 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

国际化技术参考

国际化就是用户可以选择对应的语言,页面展示成对应的语言;
原创
发布博客 2024.07.22 ·
709 阅读 ·
23 点赞 ·
0 评论 ·
8 收藏

Apache Flink 入门

Apache Flink 是一个高性能的开源分布式流处理框架,专注于实时数据流的处理。它设计用于处理无界和有界数据流,在内存级速度下提供高效的有状态计算。Flink 凭借其独特的Checkpoint机制和Exactly-Once语义,确保数据处理的准确性和一致性,同时支持高吞吐量和低延迟。通过灵活的窗口操作和丰富的状态管理功能,Flink 能够应对复杂的实时数据处理需求,是大数据处理领域的重要技术之一。其强大的DataStream API和Table API为开发者提供了高效、简洁的数据处理手段。
原创
发布博客 2024.07.17 ·
611 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

国密算法SM1 SM2 SM3 SM4 SM9

SM1作为一种对称加密算法,由于其算法细节并未公开,且主要在中国国内使用,因此在国际通用的加密库(如Bouncy Castle)中并不直接支持SM1算法。SM1算法的具体实现涉及国家密码管理局的规范,通常需要使用国家指定的安全模块(如SSF33、SC1/SC2卡)或通过国家认证的加密硬件/软件产品来实现。不过,如果你有合法授权并且在合规的环境下需要使用SM1算法,可能需要依赖特定的国产加密库或SDK,比如某些商用的密码机提供的SDK,这些SDK会封装好SM1的加解密接口供开发者调用。
原创
发布博客 2024.06.25 ·
931 阅读 ·
6 点赞 ·
0 评论 ·
8 收藏

东方通TongWeb结合Spring-Boot使用

信创需要;原状:原来的服务使用springboot框架,自带的web容器是tomcat,打成jar包启动;需求:使用东方通tongweb来替换tomcat容器;
原创
发布博客 2024.05.22 ·
5358 阅读 ·
6 点赞 ·
5 评论 ·
16 收藏

互联网产品研发流程

最近梳理的研发全流程:从需求接收 到 最后的 上线部署;从 阶段 和 角色 形成如下流程图;
原创
发布博客 2024.04.25 ·
230 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

JWT原理解析

用户登录后,后端服务根据JWT规则生成token给到前端,前端之后的请求都会携带这个token访问后端接口,后端对这些请求校验token,保障token的有效性,进而确保是合法请求;JWT非常契合单点登录,因为JWT的后端认证不需要额外访问存储信息,只需要一个秘钥就可以自认证;JWT由于包含了认证的用户信息,那么就不需要后端服务再额外保存这些认证信息,所以节省了后端的资源;由于JWT生成的token可以包含业务信息,而且这些业务信息是参与了签名的,所以保障了这些业务信息不被篡改,而且还有有效时间范围;
原创
发布博客 2024.04.23 ·
1177 阅读 ·
13 点赞 ·
0 评论 ·
5 收藏

《Python深度学习》阅读笔记

深度学习之“深度”并不是说这种方法能够获取更深层次的理解,而是指一系列连续的表示层。深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层中学习,这些层对应于越来越有意义的表示。对于图中从 A 到 B 的每条边,我们都画一条从 B 到 A 的反向边,在深度学习中,这些分层表示是通过叫作神经网络( neural network)的模型学习得到的。一些核心概念是从人们对大脑(特别是视觉皮层)的理解中汲取部分灵感而形成的,但深度学。这个反向图表示的是反向传播过程。
原创
发布博客 2024.03.15 ·
1154 阅读 ·
25 点赞 ·
1 评论 ·
13 收藏

强引用-软引用-弱引用-虚引用

强引用-软引用-弱引用-虚引用。
原创
发布博客 2024.02.22 ·
147 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

spring-cloud-starter-gateway-mvc的网关实现

最近,我也一直在使用SpringCloudGateway开发我们自己的网关产品。根据我对这份正式文件的理解,内容如下:SpringCloudGateway的默认底层依赖项是SpringWebflux。我们知道Spring Webflux是异步和响应式编程,并且编程范式是使用流范式编写的;那么SpringCloudGateway支持同步网关吗?官方支持,官方网站提供了相应的解决方案,即将默认的底层Webflux切换到SpringMVC以支持同步;
原创
发布博客 2023.12.15 ·
2632 阅读 ·
9 点赞 ·
0 评论 ·
10 收藏

设计模式系列:三、责任链设计模式

是一种行为设计模式,它允许多个对象处理一个请求,从而避免了请求的发送者和接收者之间的耦合关系。优点是把任务划分为一个一个的节点,然后按照节点之间的业务要求、顺序,把一个个节点串联起来,形成一个执行链路,一个节点一个节点向后执行;把原来一堆代码按照原子性拆分成责任链,耦合降低,可扩展性增强,责任划分清晰;
原创
发布博客 2023.11.20 ·
283 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

大数据HBASE的详细使用

HBASE是一种开源的、分布式的、基于列存储的数据库,设计用于处理大规模的数据。它提供了高可靠性、高性能、实时读写等特性,适用于存储和处理大规模的结构化数据。本文将详细介绍HBASE的使用步骤,包括环境配置、表创建、数据插入、查询和管理等操作。通过以上步骤,我们可以初步了解和掌握HBASE的基本操作。HBASE作为一款分布式数据库,具有强大的数据处理能力,适用于处理大规模的结构化数据。在实际应用中,我们需要根据业务需求和数据规模来设计和优化HBASE的使用。希望本文能对大家学习和使用HBASE有所帮助。
原创
发布博客 2023.08.31 ·
790 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Nexus仓库介绍以及maven deploy配置

首先介绍一下Nexus的四个仓库的结构:maven-central 代理仓库,代理了maven的中央仓库:https://repo1.maven.org/maven2/;maven-public 仓库组,另外三个仓库都归属于这个组,所以我们的maven配置文件只需配置这个仓库的地址,就可以使用另外三个仓库的组件;maven-releases 稳定版本仓库,这个仓库存放我们项目稳定版本的组件;maven-snapshots 快照版本仓库,这个仓库存放我们开发过程中的快照版本;
原创
发布博客 2023.08.29 ·
1114 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

转行敲代码,请三思而后行

因此,非计算机科班的人需要利用业余时间学习计算机基础知识,如编程语言、数据结构、算法等。理论知识固然重要,但在实际工作中,更多的是需要解决实际问题的能力。因此,非计算机科班的人可以尝试找一些实习或者兼职的机会,将所学知识应用到实际项目中去。总之,非计算机科班的人要想顺利地转码,需要具备一定的自学能力、培养良好的编程思维、关注实际项目经验以及保持积极的心态。在这个过程中,保持积极的心态非常重要。要相信自己有能力学会计算机知识,勇敢地面对挑战,不断地调整学习方法和策略,最终实现自己的职业转型目标。
原创
发布博客 2023.08.21 ·
158 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GIT结合Maven对源码以及jar包的管理建设

开发分支,不管是要做新的feature还是需要做bug修复,都是从这个分支分出来做。在这个分支下主要负责记录开发状态下相对稳定的版本,即完成了某个feature或者修复了某个bug后的开发稳定版本。feature-姓名-功能描述feature分支与开发任务一一对应。对每一次迭代中的每一个原子的功能点,根据任务会由负责的开发人员以develop分支建立对应的feature分支进行处理,当功能点开发自测完毕之后,就将feature分支合并到develop分支去。
原创
发布博客 2023.08.10 ·
608 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

若依框架AjaxResult改造适应Swagger接口文档

若依框架后端使用的响应对象AjaxResult,和Swagger存在不兼容问题,导致返回体即使使用了Swagger注解,但是Swagger接口文档中,不显示返回体的对象Swagger文档:
原创
发布博客 2023.05.10 ·
4301 阅读 ·
5 点赞 ·
4 评论 ·
26 收藏
加载更多