菜是菜菜
码龄9年
关注
提问 私信
  • 博客:3,126
    3,126
    总访问量
  • 3
    原创
  • 2,220,143
    排名
  • 1
    粉丝
  • 0
    铁粉

个人简介:欢迎关注公众号:种菜算法

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2016-05-12
博客简介:

qq_34967034的博客

查看详细资料
个人成就
  • 获得5次点赞
  • 内容获得3次评论
  • 获得14次收藏
创作历程
  • 3篇
    2021年
成就勋章
TA的专栏
  • 种菜算法
    3篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflowpytorch图像处理
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

获得任意风格的图片效果?深度学习算法一键P图!

当我们拍一张风景图的时候,想要把这张风景图转成各种风格的图像,如果使用PS去做,可能需要经过一道道复杂的工序,但这里有了深度学习算法之后,就能够轻轻松松达到这种效果,只需要运行程序就好了。这里用到的就是风格迁移网络了。什么是风格迁移?风格迁移将一张图片的内容保留,同时将图像风格转移成另一张图片的风格,比如梵高风格。下面就是一些典型的例子,可以将原本的照片转换成梵高的画作风格,但是依旧保留着原本图片的主体内容。风格迁移历程风格迁移最开始是从A Neural Algorithm of Artistic
原创
发布博客 2021.04.08 ·
551 阅读 ·
1 点赞 ·
2 评论 ·
1 收藏

轻松玩转BERT!Transformers快速上手

目前NLP最前沿的研究领域基本上已经被大型语言模型+迁移学习这一范式所垄断了。2017年6月,Google研究人员在Attention is all you need中提出了Transformer编码解码结构, 这一结构也成为了后续一系列工作的基石。2018年10月,基于Transformer,Google的研究人员发布了“全面超越人类”的BERT,一种融合了双向上下文信息预训练语言模型,该模型当时一举打破了11项纪录。从此之后,BERT的继任者们百花齐放,不断刷新各leaderboard最高成绩。现在,这
原创
发布博客 2021.04.08 ·
838 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

让你的模型加速运行,ONNX你值得拥有!

平时打比赛、做研究几乎很少会考虑到模型推断效率的问题,基本上大多数模型只要有GPU,模型的推断效率就不会差。但在公司业务中,应对工程场景时,就不得不考虑模型的运行效率和资源的开销了。并不是所有的模型都需要部署到GPU服务器上,不少深度学习模型还是会在CPU上运行,毕竟一块了Tesla GPU就得上万元起了,而CPU价格则很低。但是直接使用基于python的深度学习框架在CPU部署模型,模型运算效率较低。在追求低延时的场景下,这样的方式几乎不可取。那么在这种情况下ONNX就是一个大杀器了!什么是ONNX?
原创
发布博客 2021.03.29 ·
1737 阅读 ·
2 点赞 ·
1 评论 ·
11 收藏