【洛谷 P3375】【模板】KMP 题解(字符串+KMP算法)

文章讨论了KMP算法在查找字符串中特定子串出现位置和计算子串前缀最长border长度的应用

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【模板】KMP

题目描述

给出两个字符串 s 1 s_1 s1 s 2 s_2 s2,若 s 1 s_1 s1 的区间 [ l , r ] [l, r] [l,r] 子串与 s 2 s_2 s2 完全相同,则称 s 2 s_2 s2 s 1 s_1 s1 中出现了,其出现位置为 l l l
现在请你求出 s 2 s_2 s2 s 1 s_1 s1 中所有出现的位置。

定义一个字符串 s s s 的 border 为 s s s 的一个 s s s 本身的子串 t t t,满足 t t t 既是 s s s 的前缀,又是 s s s 的后缀。
对于 s 2 s_2 s2,你还需要求出对于其每个前缀 s ′ s' s 的最长 border t ′ t' t 的长度。

输入格式

第一行为一个字符串,即为 s 1 s_1 s1
第二行为一个字符串,即为 s 2 s_2 s2

输出格式

首先输出若干行,每行一个整数,按从小到大的顺序输出 s 2 s_2 s2 s 1 s_1 s1 中出现的位置。
最后一行输出 ∣ s 2 ∣ |s_2| s2 个整数,第 i i i 个整数表示 s 2 s_2 s2 的长度为 i i i 的前缀的最长 border 长度。

样例 #1

样例输入 #1

ABABABC
ABA

样例输出 #1

1
3
0 0 1

提示

样例 1 解释

对于 s 2 s_2 s2 长度为 3 3 3 的前缀 ABA,字符串 A 既是其后缀也是其前缀,且是最长的,因此最长 border 长度为 1 1 1

数据规模与约定

本题采用多测试点捆绑测试,共有 3 个子任务

  • Subtask 1(30 points): ∣ s 1 ∣ ≤ 15 |s_1| \leq 15 s115 ∣ s 2 ∣ ≤ 5 |s_2| \leq 5 s25
  • Subtask 2(40 points): ∣ s 1 ∣ ≤ 1 0 4 |s_1| \leq 10^4 s1104 ∣ s 2 ∣ ≤ 1 0 2 |s_2| \leq 10^2 s2102
  • Subtask 3(30 points):无特殊约定。

对于全部的测试点,保证 1 ≤ ∣ s 1 ∣ , ∣ s 2 ∣ ≤ 1 0 6 1 \leq |s_1|,|s_2| \leq 10^6 1s1,s2106 s 1 , s 2 s_1, s_2 s1,s2 中均只含大写英文字母。


思路

KMP算法是一种改进的字符串匹配算法,能在线性时间内完成任务,其主要优点是在匹配失败时,不会从头开始匹配,而是利用已经部分匹配的有效信息,避免了之前已匹配的字符的重复检查。

分为两个步骤:生成部分匹配表和查找字符串。

在生成部分匹配表的步骤中,首先初始化变量j为0,表示当前已经匹配的字符数量。然后,它遍历目标字符串s2的每一个字符。如果当前字符不匹配,程序会向前回溯,即将j设置为pmt[j],这是一个核心的优化,利用了之前匹配的信息,避免了从头开始匹配。如果当前字符匹配,那么j就会后移一位。最后,将当前的j值存入部分匹配表pmt中。

在查找字符串的步骤中,同样初始化j为0,然后遍历主字符串s1的每一个字符。如果当前字符不匹配,程序会向前回溯。如果当前字符匹配,j就会后移一位。如果j等于目标字符串s2的长度,那么就找到了一个匹配的子串,输出这个子串在主字符串中的开始位置,然后继续向前回溯,寻找下一个可能的匹配。

最后输出部分匹配表,这个表是KMP算法的关键,它记录了目标字符串的自我重复性信息,用于在匹配失败时快速跳过已知的不可能匹配的部分。


AC代码

#include <cstring>
#include <iostream>
#define AUTHOR "HEX9CF"
using namespace std;

const int N = 1e7 + 7;

string s1, s2;
int pmt[N];

int main() {
	cin >> s1 >> s2;
	s1 = " " + s1;
	s2 = " " + s2;
	int l1 = s1.length() - 1;
	int l2 = s2.length() - 1;
	int j;	// 当前已经匹配的字符数量

	// 生成部分匹配表
	j = 0;
	for (int i = 2; i <= l2; i++) {
		// 下一个字符不匹配
		while (j && s2[i] != s2[j + 1]) {
			// 向前回溯
			j = pmt[j];
		}
		// 下一个字符匹配
		if (s2[i] == s2[j + 1]) {
			// j 后移一位
			j++;
		}
		// 更新部分匹配表
		pmt[i] = j;
	}

	// 查找字符串
	j = 0;
	for (int i = 1; i <= l1; i++) {
		// 下一个字符不匹配
		while (j && s1[i] != s2[j + 1]) {
			// 向前回溯
			j = pmt[j];
		}
		// 下一个字符匹配
		if (s1[i] == s2[j + 1]) {
			// j 后移一位
			j++;
		}
		// 匹配到字符串
		if (j == l2) {
			cout << i - l2 + 1 << endl;
			// 向前回溯,继续查找
			j = pmt[j];
		}
	}

	for (int i = 1; i <= l2; i++) {
		cout << pmt[i] << " ";
	}
	cout << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值