一、NLP简介
在这个大数据时代,几乎所有事物都能用数据描述。数据可以大致分为三类。
第一类是用于传播的媒体数据,如图片、音频、视频等。这类数据一般不需要做处理,只需要存储和读取。
第二类是数字类数据,其价值很高。因为数字是有一定规律的,从已有数字中发现的规律可以用于预测未来的数据。这也是传统大数据处理与分析的主要方面。
第三类是自然语言数据。这类数据更贴近生活,对其进行统计和分析,可以让机器理解人的语言,实现机器与人的交流。就像智能手机中的语音助手一样,它们能听懂我们说的话,执行我们需要的操作,甚至能和我们进行简单的交流。因此,NLP是目前大数据处理和分析的新兴领域。
1、NLP的应用领域
NLP在实现人工智能的目标上划分为很多领域,在不同的领域中所起的作用也不同。下面简单了解一下NLP的7个主要应用领域。
(1)情感分析
可将情感分析简单理解为通过某人的言论分析出其对某个事物的观点或看法的倾向,多用于分析用户反馈(如电子商务网站的用户购物评价)来帮助企业进行决策。
(2)智能问答
智能问答常见的应用场景是客服机器人和智能语音助手。初级应用是根据用户提出的问题进行浅层的情感分析和关键词提取,然后返回指定的回复语句;中级应用是聊天功能
本文详细介绍了自然语言处理(NLP)的基本概念、流程和应用领域,包括情感分析、智能问答等。接着探讨了中文分词的三种方法,重点讲解了jieba分词器的使用和自定义词典调整。此外,还深入介绍了Gensim工具包,包括TF-IDF、LDA等主题模型,以及词频统计和文档相似度计算。文章通过新闻关键词提取案例展示了NLP在实际应用中的步骤和方法。
订阅专栏 解锁全文

1754

被折叠的 条评论
为什么被折叠?



