一、数据分析思路
大概可以分为下面这几个步骤:
- 数据采集;
- 原始数据完整性检查;
- 数据清洗、整理;
- 从不同角度对数据进行分析;
- 数据可视化;
- 总结;
主要使用 Python 来进行分析:
- 数据采集: 主要涉及的 python 库包括 requests,BeautifulSoup,csv,以及一些其他常用工具。
- 数据完整性检查: 包括不同数据来源的对比,以及其他一些常识性的知识。需要对比数据量的多少是否完整,以及有些数据是否缺失。
当然,在拿到数据的初期,其实只能做一个初步的判断,有些内容是在整个分析过程中发现的。
- 数据清洗与整理: 主要用到 Pandas、Numpy 以及其他常用库和函数。由于数据比较杂乱,数据清洗与整理涉及的内容比较多,可以说是整个福布斯系列的重点之一。
同时,这个也印证了通常我们所说的数据清洗与整理可能占整个分析的 50~80%。
- 数据分析与可视化: 经常是伴随在一起的。主要根据不同分析目的进行分析与可视化。用到的工具包括 Pandas、Numpy、Matplotlib、Seaborn 以及其他一些相关库。
二、数据分析案例
福布斯每年都会发
本文详述了使用Python进行数据分析的流程,包括数据采集、完整性检查、清洗、整理和可视化。通过福布斯全球上市企业2000强排行榜数据为例,介绍了如何处理数据缺失、错位等问题,以及数据清洗中的关键步骤。文章还提到了数据完整性检查的重要性,如检查企业数量、数据错位和缺失,并展示了如何通过爬虫获取和补充数据。
订阅专栏 解锁全文

3万+

被折叠的 条评论
为什么被折叠?



