Python 数据采集、清洗、整理、分析以及可视化实战

本文详述了使用Python进行数据分析的流程,包括数据采集、完整性检查、清洗、整理和可视化。通过福布斯全球上市企业2000强排行榜数据为例,介绍了如何处理数据缺失、错位等问题,以及数据清洗中的关键步骤。文章还提到了数据完整性检查的重要性,如检查企业数量、数据错位和缺失,并展示了如何通过爬虫获取和补充数据。
摘要由CSDN通过智能技术生成

一、数据分析思路

大概可以分为下面这几个步骤:

  1. 数据采集;
  2. 原始数据完整性检查;
  3. 数据清洗、整理;
  4. 从不同角度对数据进行分析;
  5. 数据可视化;
  6. 总结;

主要使用 Python 来进行分析:

  • 数据采集: 主要涉及的 python 库包括 requests,BeautifulSoup,csv,以及一些其他常用工具。
  • 数据完整性检查: 包括不同数据来源的对比,以及其他一些常识性的知识。需要对比数据量的多少是否完整,以及有些数据是否缺失。

当然,在拿到数据的初期,其实只能做一个初步的判断,有些内容是在整个分析过程中发现的。

  • 数据清洗与整理: 主要用到 Pandas、Numpy 以及其他常用库和函数。由于数据比较杂乱,数据清洗与整理涉及的内容比较多,可以说是整个福布斯系列的重点之一。

同时,这个也印证了通常我们所说的数据清洗与整理可能占整个分析的 50~80%。

  • 数据分析与可视化: 经常是伴随在一起的。主要根据不同分析目的进行分析与可视化。用到的工具包括 Pandas、Numpy、Matplotlib、Seaborn 以及其他一些相关库。

二、数据分析案例

福布斯每年都会发

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wespten

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值