一、缓存流程图
释义:前端发起请求,先查缓存是否有,缓存有则直接返回前端,缓存没有,则请求数据库,请求数据库成功,先存至缓存,然后在返回前端
红线代表缓存没有查询到的情况,黑线代表缓存查询到的情况
缓存的意义:数据库数据存入缓存,请求直接从内存中读取不用经过数据库(牵扯IO),减轻数据库压力并且提升性能。
二、缓存穿透【穿透缓存、数据库,都无数据】
定义:缓存穿透,是指缓存和数据库中都无数据,而用户不断发起请求;如发起为id为“-1”的数据或id为特别大不存在的数据。这时的用户很可能是攻击者,攻击会导致数据库压力过大。
解决方案:
1)在接口层增加校验。比如:①用户鉴权校验,②id做基础校验,id<=0的直接拦截并返回。
2)使用临时缓存机制。缓存和数据库都取不到,此时可将key-value对写为key-null,设置较短的缓存有效时间(如30秒,设置太长可能导致正常情况没法使用)。如此,可防止用户反复用同一id暴力按查询攻击。
3)布隆过滤器处理缓存穿透(这个也很好)
缓存key-null demo
完善的时候要对key设置一个相对短暂的失效时间
三、缓存击穿【击穿缓存,能在数据库中查到】
定义:缓存击穿,是指缓存中没有,数据库中有的数据(一般情况是缓存时间到期);此时,由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,导致数据库压力瞬间增大。
解决方案:
1)热点数据设置为永不过期。
2)加互斥锁,对查询操作进行同步。参考代码如下。
static Lock reenLock = new ReentrantLock();
public List<String> getData() throws InterruptedException {
List<String> result = new ArrayList<String>();
// 从缓存取数
result = getDataFromCache();
if (result.isEmpty()) {
if (reenLock.tryLock()) {
try {
System.out.println("拿到锁,从DB获取数据库后写入缓存");
// 从数据库取数
result = getDataFromDB();
// 将查询到的数据写入缓存
setDataToCache(result);
} finally {
reenLock.unlock();// 释放锁
}
} else {
result = getDataFromCache();// 先再查一下缓存
if (result.isEmpty()) {
System.out.println("没拿到锁,缓存也无数据,等待...");
Thread.sleep(100);//等待
return getData();//重试
}
}
}
return result;
}
说明:
1)缓存中有数据,直接返回结果。
2)缓存中没有数据,获取锁并从数据库去取数据,没释放锁之前,其他并行进入的线程会等待100ms,再重新去缓存取数据。这样就防止都去数据库重复取数据,重复往缓存中更新数据情况出现。
3)当然这是简化处理,理论上如果能根据key值加锁就更好了,就是线程A从数据库取key1的数据并不妨碍线程B取key2的数据,上面代码明显做不到这点。方案:锁可以细粒度到key。
四、缓存雪崩
定义:缓存雪崩,是指缓存中数据大批量到过期时间,而查询数据量巨大,引起数据库压力过大甚至down机。
与“缓存击穿”区别:缓存击穿,是指并发查询同一条数据;缓存雪崩,是不同的数据都已基本同时过期,很多数据缓存查不到,都转而查询数据库。
解决方案:
1)批量往Redis存数时,每个Key的失效时间设置为随机值,如此可保证数据不会在同一时间大面积失效。
setRedis(Key,value,time + Math.random() * 10000);
2)如果Redis是集群部署,将热点数据均匀分布在不同的Redis库中,也可避免全部失效的问题。
3)热点数据设置永不过期,有更新操作则更新缓存即可。
其他解决雪崩的方法
1、分布式锁(本地锁)
当突然有大量的请求到数据库服务器的时候,进行对数据库服务请求限制。这个可以使用锁的机制,保证只有一个线程(请求)进行数据库的访问操作,否则则直接排队等待(如果是集群服务器的话,要使用分布式锁,单机版可以使用本地锁)。确实可以解决雪崩效应,但是会减少服务器的吞吐量。(适合与小项目)
通过ReentrantLock来保证每次只能有一个线程执行进而防止大量请求发生导致的雪崩,但是缺点就是吞吐量比较低。除了reentrantLock,还可以做限流。
2、使用消息中间件(最靠谱),消息中间件可以解决高并发问题。
这只说下MQ处理的思想
1、如果redis查询不到结果的情况,这个时候直接将查询DB的方法作为一个消息防止消息中间件中,
3、redis+ehcache做一级和二级缓存
public Users getUser(Long id) {
String key = this.getClass().getName() + "-" + Thread.currentThread().getStackTrace()[1].getMethodName()
+ "-id:" + id;
// 1.先查找一级缓存(本地缓存),如果本地缓存有数据直接返回
Users ehUser = (Users) ehCacheUtils.get(CACHENAME_USERCACHE, key);
if (ehUser != null) {
System.out.println("使用key:" + key + ",查询一级缓存 ehCache 获取到ehUser:" + JSONObject.toJSONString(ehUser));
return ehUser;
}
// 2. 如果本地缓存没有该数据,直接查询二级缓存(redis)
String redisUserJson = redisService.getString(key);
if (!StringUtils.isEmpty(redisUserJson)) {
// 将json 转换为对象(如果二级缓存redis中有数据直接返回二级缓存)
JSONObject jsonObject = new JSONObject();
Users user = jsonObject.parseObject(redisUserJson, Users.class);
// 更新一级缓存
ehCacheUtils.put(CACHENAME_USERCACHE, key, user);
System.out.println("使用key:" + key + ",查询二级缓存 redis 获取到ehUser:" + JSONObject.toJSONString(user));
return user;
}
// 3. 如果二级缓存redis中也没有数据,查询数据库
Users user = userMapper.getUser(id);
if (user == null) {
return null;
}
// 更新一级缓存和二级缓存
String userJson = JSONObject.toJSONString(user);
redisService.setString(key, userJson);
ehCacheUtils.put(CACHENAME_USERCACHE, key, user);
System.out.println("使用key:" + key + ",一级缓存和二级都没有数据,直接查询db" + userJson);
return user;
}
4、就是上面说的三点,均摊分布redis key的失效时间。比较靠谱,不同的key的失效时间都不同。