二叉树---深度

很基本的问题,依旧从递归遍历或者层次广度优先遍历做起;


递归法


本题其实也要后序遍历(左右中),依然是因为要通过递归函数的返回值做计算树的高度。

按照递归三部曲,来看看如何来写。

确定递归函数的参数和返回值:参数就是传入树的根节点,返回就返回这棵树的深度,所以返回值为int类型。
代码如下:


int getDepth(TreeNode* node)
确定终止条件:如果为空节点的话,就返回0,表示高度为0。
代码如下:


if (node == NULL) return 0;
确定单层递归的逻辑:先求它的左子树的深度,再求的右子树的深度,最后取左右深度最大的数值 再+1 (加1是因为算上当前中间节点)就是目前节点为根节点的树的深度。
代码如下:

class Solution {
public:
    int getDepth(TreeNode* node) {
        if (node == NULL) return 0;
        int leftDepth = getDepth(node->left);       // 左
        int rightDepth = getDepth(node->right);     // 右
        int depth = 1 + max(leftDepth, rightDepth); // 中
        return depth;
    }
    int maxDepth(TreeNode* root) {
        return getDepth(root);
    }
};

作者:carlsun-2
链接:https://leetcode-cn.com/problems/er-cha-shu-de-shen-du-lcof/solution/qiu-shu-de-zui-da-shen-du-xiang-jie-by-carlsun-2-3/

迭代法


使用迭代法的话,使用层序遍历是最为合适的,因为最大的深度就是二叉树的层数,和层序遍历的方式极其吻合。

在二叉树中,一层一层的来遍历二叉树,记录一下遍历的层数就是二叉树的深度,如图所示:

所以这道题的迭代法就是一道模板题,可以使用二叉树层序遍历的模板来解决的。

class Solution {
public:
    int maxDepth(TreeNode* root) {
        if (root == NULL) return 0;
        int depth = 0;
        queue<TreeNode*> que;
        que.push(root);
        while(!que.empty()) {
            int size = que.size();
            depth++; // 记录深度
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return depth;
    }
};

作者:carlsun-2
链接:https://leetcode-cn.com/problems/er-cha-shu-de-shen-du-lcof/solution/qiu-shu-de-zui-da-shen-du-xiang-jie-by-carlsun-2-3/

参考:https://leetcode-cn.com/problems/er-cha-shu-de-shen-du-lcof/solution/qiu-shu-de-zui-da-shen-du-xiang-jie-by-carlsun-2-3/

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页