未来计算机将何去何从?

人工智能 同时被 2 个专栏收录
12 篇文章 0 订阅
10 篇文章 0 订阅

有时候,换种想法来思考计算机的运行方式,可以让我们感觉到原来还有这样的世界,等着我们去探索。就在我们探索人工智能的路上大步前行的时候,我们可能遇到一些问题。10nm的工艺进展不顺利,闪存颗粒价格也没有按照“摩尔定律”的规则,目前一直处于高位,难道真的要进入到“后计算机”时代了么?

就在编程语言排行榜一遍又一遍展示在我们大众面前,“PHP是世界上最好的语言”的争论可以让世界毁灭的状态下,实际工作中,反而是java、c#、c++、python、js等热门语言通力协作,各自发挥自己的长处,才构建出最好的系统。在学术中,更是有数不尽的小语种活跃在各个研究热点领域下。那么为什么一定要占据绝对主流的冯诺依曼数字电路通用电子计算机来完成人类的未来——人工智能呢?

“光脑”作为最可能实现的下一代计算机核心部件,想必大家不再陌生。那么以光为主要媒介的“激光计算机”何时才能出现呢?其实不远了,目前已经有光电混合的计算机出现了。但是这里,我们要介绍的是几个可以说是“非主流”的计算机。

模拟电路计算机

在现代计算机理论中,模拟电路计算机曾经也红火过,后来随着集成电路的发展以及计算机体系的完善,模拟电路计算机被挤到了边缘,但是这丝毫不会影响模拟电路计算机的前景,尤其是人工智能时代。举一个最简单的例子,简化所有的物理变量影响,只考虑原理,如果有三条电路,称为X,Y,Z,其中X,Y与Z连接,如果X,Y分别代表两个输入,其种的电流为模拟值,那么Z表示输出,这个结构大家很容易理解,Z中的电流值则表示X、Y电流值之和,而且可以表示其真实电流限度内的任意数值相加,这就是一个单元加法器。再想一想现代计算机理论中,我们如何做除了1+1=2以外的加法运算,并联、串联、半加法器,还记得吗?数字计算机擅长处理文本、存储信息等数据处理的大量计算。模拟计算机则在计算机视觉、物理建模(微分、积分运算)、机器控制等表现十分突出。总而言之,这是两种思想,数字方法告诉我们,解决问题的过程如下:问题-建模-编程-计算-得解,这5个步骤,大家对此一定特别熟悉,而另一种方法则是:问题-模拟-测量-得解,这4个步骤。就此来看,模拟方法比数字方法要简单得多、快得多,然而它并不是一个通用的解决问题的方法,因此没有成为主流。但是模拟方法在某些特定的问题中的有效性,也不应忽视。

DNA计算

我们可能很难去理解,DNA怎么能作为运算单元呢,最多当作存储单元,因为我们熟悉,DNA分子是一种令人难以置信的密集存储介质,1克DNA能够存储大约2PB,相当于大约300万张CD。这里简要的介绍一个例子,虽然简单,但足以窥见DNA计算的强大潜力。

在早些时候,DNA计算解决了著名的汉密尔顿路径问题。在这里,使用DNA的单链来表示所有城市及城市间的路程,这样,每条“路径链”的左半部分与出发城市X的DNA配对,而右半部份则与到达城市Y的DNA配对。当代表所有城市及其之间路径的DNA链被混合在一起时,各个路径链左右两截分别与对应的城市链结合在一起,连缀成各种不同长度的链条,如从城市Y到X再到Z,这个DNA链就是最终的路径。


那么如何进行操作计算呢,首先使用“聚合酶链式反应”,也就是我们最熟悉的PCR技术,这个我们高中生物讲到不少,这是一种DNA复制技术,增加起点城市和终点城市的DNA分子数量。然后,我们熟悉的另一个技术——““凝胶电泳”技术,可以区分不同长度的DNA片段(由于糖-磷酸骨架结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷),只需要找到特定长度的链,这些长度标志着这些链恰好经过了N座城市。但是这样不能保证一个城市只经过一次,那么只需要在通过“过滤器”,也就是一些磁性球,其表面分别覆盖这每个城市的DNA互补的DNA链,通过这一过程就可以捕获到那些每个城市至少访问过一次的链。经过这样的处理幸存后的分子,就是汉密尔顿路径。

那么我们现在我们来分析一下这个做法的优缺点。其优点毋庸置疑,首先,廉价、相比较数字电子计算机,DNA计算几乎不需要成本,因为它是生物的一部分,而且很小的一部分,可以通过成长来获取更多的DNA。其次,迅速,很显然,DNA计算是并行计算,而且性能不错。最后,由于这种可能性,最终的答案也许就是我们人类自身其实也是某些超人类文明的一种运算器,用来探知整个宇宙的奥秘。那么缺点也很明显,它是随机的,因此它并不保证处理大规模的汉密尔顿路径问题,比如1000个城市,那时候,真的需要一大罐DNA。

量子计算

这里我们只是小见一下量子计算的魅力,并不对量子计算的具体实现做出详细的解释,因为这需要牵扯到一定程度的量子理论。为了简化问题,我们拿现有的计算机来和通用计算机做一下对比。现有计算机是使用二进制来进行运算,1bit也的值也就是0、1。那么量子计算机中我们1量子比特的值也只有0、1,振幅为0的记为A0,振幅为1的记为A1,如果有两个量子比特,那么就记为A00、A01、A11、A10四种状态,如果有3个的话,就有8种状态。这时候可能要问了,这不和传统的编码方式一样么,n个比特最多可编码2的n次方个数,没错,现在来看,确实一样,那么量子计算的优越性在哪里呢?我们常说的叠加态又是一个什么意思呢?这就要从我们熟悉的双缝干涉开始说起。我们都知道,双缝干涉实验是在一个屏幕上会出现明暗相间的条纹,如果是两个缝,则在一个屏幕上会同时出现00、01、11、10共4种状态,而几乎不需要时间。如果是传统的计算机,要想用2位比特表示4个数,至少要4个状态时间才行。当然,这和“不确定性”算法还有一定的差距,因为量子计算机一次可叠加的状态取决于其量子比特位数,但这已经极大简化了计算过程。以因数分解为例,一个1000位的数,“只”需要100万步,而经典算法则需要1000万亿步(这里我没有打错)。

其量子计算的前景显而易见,上述只是其中一个量子算法,还有更多的量子算法被不断的发现和实践。而且,就现在研究而言,真实情况并不像上述描述那般简单,主要涉及到粒子自旋等一系列挑战人类常规认知的情况发生。有些算法已经可以解决某些NP完全问题,但是,实践上,还有很长的路要走。

在2007年,加拿大计算机公司D-Wave展示了全球首台量子计算机“Orion(猎户座)”,它利用了量子退火效应来实现量子计算。2009年11月15日,世界首台可编程的通用量子计算机正式在美国诞生。2013年6月8日,由中国科学技术大学潘建伟院士领衔的量子光学和量子信息团队的陆朝阳、刘乃乐研究小组,在国际上首次成功实现了用量子计算机求解线性方程组的实验。2015年12月,以杜教授为首的中国科学技术大学研究人员小组建立了一个新的系统,这个系统可以使用相应的方式退出体系结构。


模拟电路计算机、DNA计算、计算、技术jian中国科技10、量子计算等一系列下一代计算机技术,都在像我们展示着未来的宏伟蓝图。我们讨论机器学习、自然语言处理、人工智能什么时候能够成熟,AR/VR什么时候能够进入千家万户时。不要忘记,我们互联网的真正的应用才不到20年,其云计算概念才10年(2006年8月9日,Google首席执行官埃里克·施密特在搜索引擎大会首次提出“云计算”的概念),如今已经是各大系统的主流配置。在上个世纪80年代,那时候计算机技术还并不是一个完整个独立生产力,只要把我们现在的经典算法应用到实际生产中,那对生产力的发展将是质的提升。(动态规划——送快递、回溯法——策略游戏)但现在,我们是将机器学习应用到各个领域中,从而进一步提成其生产力的发展。

还记得我刚入计算机科学与技术专业时,人们称这个专业是“万金油”,也就是什么行业都可以就业。如今,计算机成为一个独立的极具生产力的行业,其他行业都在想方设法的与它联姻(滴滴、淘宝、智能家居、自动化生产、个性化推荐),真是三十年河东,三十年河西。

还是那句话,人工智能的路上和珠峰路上的景象将会是惊人的相似,但我毫不怀疑,在峰顶会有属于人类的脚印。


  • 2
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值