上下文信息简介

简介

在实际的世界中,目标不可能单独的存在,它一定会于周围其他的对象会这是环境有或多或少的关系,这就是通常所说的上下文信息。上下文信息通常被理解为:察觉并能应用能够影响场景和图像中的对象的一些信息或者是全部信息。来源于对人类视觉系统的模拟,人类的大脑具有出色的识别性能,在目标及背景复杂的情况下人类视觉系统依然可以快速识别和分类大量的目标。对于目标成像的光照、姿态、纹理、形变和遮挡等因素均具有非常好的适应性。

针对于不同的领域,上下文的含义也不尽相同。本文中我的理解是:通过捕捉不同的对象之间的相互作用信息,对象与场景之间的相互作用信息作为条件来对新目标进行识别、处理。上下文信息并不是直接从目标的外观上直接得到,而是从邻域内的数据,目标的标注,目标的空间位置或者数据统计信息中得到。

在计算机视觉领域,很多学者采用 Biederman的语义关系划分来完成目标识别的方法研究。这种划分根据上下文信息的来源可以划分三类:语义上下文(可能性),空间上下文(位置),尺度上下文(尺寸)。多种类型的上下文信息在理论上已经被证明在计算机视觉、图像处理方面中扮演了非常重要的角色,能提高识别的准确度和精确度。但是若想要它广泛应用于实践之中仍有很多问题需要解决,除了理论基础仍需要完善外,面对生活中数不计的图像数据,构建完整的上下文信息库和对应的高效算法是推广的必要;总之:上下文信息的应用旨在模仿人类对外界事物的感知,是下一代计算机视觉和机器学习的主流,也是当今研究的热点

 上下文信息的应用

   图像分割

   目标跟踪与识别

   网络安全

   信息检索

上下文存在的问题

计算量太大

通过前面的论述可以看出,上下文信息的合理使用可以帮助我们更好的完成任务,尤其是多种上下文信息的混合使用。但是这也带来了一个很大的问题,随着数据量的增大或者图像之间关联的增加,一些检测模型的计算量增长变得非常大,使得模型的可扩展性比较差。比如对于应用像素上下文的目标分类模型来说,空间上下文信息的描述被分为两层:即第一层描述的是不同区域之间的关联;第二层描述的是图像中不同的目标之间的关联;目标与区域之间的关联描述在两层之间。但是随着图像中分层数量的增加,计算复杂度的增长也是异常的迅速。多重上下文信息的联合使用确实可以得到更加准确的结果,但是其中不同层次和信息结合的参数估计也引发的非常巨大的计算复杂度。更不用和尺寸上下文信息的三者联合使用,因为,尺寸上下文信息在计算2D图像的复杂度就很高。所以在以后的工作中,如何设计出能够更好的将多种上下文信息的联合使用的模型和开发更加高效的算法是一个研究的重点。

缺乏统一的标准

虽然上下文信息的使用可以很好的提高图像识别准确性,在计算机视觉领域也有很多的研究阐述了上下文信息在人类的目标检测中也扮演了非常重要的角色。但是,当人们需要一个高性能的识别系统时,还是比较青睐传统的方法,这也是为什么上下文信息在实际中应用较少的一个原因。造成这种现象的原因我总结为两个:第一,当前已经公开发表的大多的关于应用上下文信息的工作或者方法全部都是在自己构建的数据集的基础上完成对新方法的测试。由于缺乏实际的一个标准,很难比较它和未应用上下文信息方法的优劣;第二,上下文信息在理论方面也是缺乏一个标准,有非常少的文献可以清晰地说明上下文信息的组成。由此导致的问题是:对于一个给定的任务,上下文信息的使用能不能提高性能是一个未知数,对于性能有多少提升也是一个未知数。这也是导致上下文信息的应用较少的一个重要的原因。

上下文信息应用前景

当今人工智能是一个研究的热点,而其中的核心便是机器学习,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

机器学习专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。其中上下文分析在机器学习方面就是一个非常有前途的研究方向。上下文信息应用就是致力于模仿人类的认知系统,不仅是前文比较频繁提到的视觉系统的模拟,还可以应用于语音识别等多种对人类感知信息的方式的模仿,可以提高认知的准确性,推动机器学习领域向前发展。

评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值