复杂度分析(笔记)

整理搬运中…
03复杂度分析(上):如何分析、统计算法的执行效率和资源消耗?

1.为什么需要复杂度分析?

我们把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用内存的大小。为什么还要做时间、空间复杂度分析呢?这种分析方法比我跑一遍代码得到的数据更准确吗?

首先,可以肯定这种评估算法执行效率的方法是正确的,叫事后统计法。但是,这种统计方法有很大的局限性。

1.测试结果非常依赖测试环境

  • 测试环境中硬件的不同会对测试结果产生很大的影响。比如,分别用i9处理器和i3处理器运行。还有,a代码和b代码在不同机器上的运行速度可能会有截然相反的结果。

2.测试结果受数据规模大小的影响

  • 举个例子,同一个排序算法,待排序数据的有序度不一样,排序的执行时间会有很大差别。极端情况下,如果数据已经近乎有序,排序算法几乎不需要做任何操作,执行时间就会非常短。如果测试数据规模太小,测试结果可能无法真实地反映算法的性能。比如,对小规模的数据排序,插入排序可能比快速排序更快。

2.大O复杂度表示法

粗略的讲,算法的执行效率就是算法代码的执行时间。但是,如何在不运行代码的情况下,用“肉眼”判断一段代码的执行时间?

这里有段简单的代码,求1,2,3,…,n的累加和,下面去估算这段代码的执行时间。

int cal(int n){
	int sum = 0;
	int i = 1;
	for(; i <= n; ++i){
		sum = sum + i;
	}
	return sum;
}

从CPU的角度看,这段代码每行都执行类似的操作,尽管每行代码对应的CPU执行的个数、执行的时间都不一样。但是,我们只是粗略估计,假设每行代码执行的时间都一样,为unit_time。

第2/3行代码分别需要1个unit_time的执行时间,第4/5行代码都运行n次,需要2n*unit_time的执行时间。所以,这段代码总的执行时间为
(2n+2)*unit_time。代码的执行时间T(n)与每行代码的执行次数成正比。

按照这个思路分析,再来看一段代码。

int cal(int n){
	int sum = 0;
	int i = 1;
	int j = 1;
	for(; i <= n; ++i){
		j = 1;
		for(; j <= n; ++j){
			sum = sum + i * j;
		}
	}
	return sum;
}

依旧假设每个语句的执行时间都是unit_time。第2/3/4行代码,都需要一个unit_time的执行时间,第5/6行代码循环执行n遍,需要2n*unit_time的执行时间,第7/8行代码循环执行了n2遍, 需要2n2 * unit_time的执行时间。所以,整段代码总的执行时间T(n) = (2n2+2n+3)*unit_time

尽管我们不知道unit_time的具体值,但是通过这两段代码执行时间的推导,可以得到一个非常重要的规律。即,代码的执行时间T(n)与每段代码的执行次数n成正比。把这个规律总结成一个公式,如下:T(n) = O(f(n))

解释一下这个公式。其中,T(n)已经讲过了,它表示代码执行的时间;n表示数据规模的大小;f(n)表示每行代码执行的次数总和。公式中的O,表示代码的执行时间T(n)与f(n)表达式成正比。

所以,第一个例子中的T(n) = O(2n+2),第二个例子中的T(n) = O(2n2+2n+3)。这就是大O时间复杂度表示法。大O时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势。所以,也叫渐进时间复杂度(asymptotic time complexity),简称时间复杂度。

当n很大时,你可以把它想象成10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大O表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O(n)T(n) = O(n2)

3.时间复杂度分析

如何分析一段代码的时间复杂度?有三个比较实用的方法。

1.只关注循环执行次数最多的一次代码。

  • 刚才说了,大O复杂度表示方法只表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代码的时间复杂度的时候,只关注循环执行次数最多的那一段代码就可以了。这段核心代码执行次数的n的量级,就是整段要分析代码的时间复杂度。为了便于理解,拿例子来说明。
int cal(int n){
	int sum = 0;
	int i = 1;
	for(; i <= n; ++i){
		sum = sum + i;
	}
	return sum;
}

第2/3行代码都是常量级的执行时间,与n的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第4/5行代码,这两行代码被执行了n次,所以总的时间复杂度就是O(n)

2.加法法则:总复杂度等于量级最大的那段代码的复杂度。

  • 这里还有一段代码。先试着分析一下,然后再往下看分析思路。
int cal(int n) {
	int sum_1 = 0;
	int p = 1;
	for (; p < 100; ++p) {
	sum_1 = sum_1 + p;
	}
	
	int sum_2 = 0;
	int q = 1;
	for (; q < n; ++q) {
		sum_2 = sum_2 + q;
	}
	
	int sum_3 = 0;
	int i = 1;
	int j = 1;
	for (; i <= n; ++i) {
		j = 1; 
		for (; j <= n; ++j) {
			sum_3 = sum_3 + i * j;
		}
	}
	
	return sum_1 + sum_2 + sum_3;
 }

代码分为三部分,分别是求sum_1、sum_2、sum_3。我们可以分别分析每一部分的时间复杂度,然后把它们放到一块儿,再取一个量级最大的作为整段代码的复杂度。

第一段的时间复杂度是多少呢?这段代码循环执行了100次,所以是一个常量的执行时间,跟n的规模无关。再强调一下,即便这段代码循环10000次、100000次,只要是一个已知的数,跟n无关,照样也是常量级的执行时间。当n无限大的时候,就可以忽略。回到时间复杂度的概念来说,它表示的是一个算法执行效率与数据规模增长的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势并没有影响。

第二段代码和第三段代码的时间复杂度是多少呢?答案是O(n)和O(n2)。综合这三段代码的时间复杂度,我们取其中最大的量级。所以,整段代码的时间复杂度就为O(n2)。也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度。那我们将这个规律抽象成公式就是:如果T1(n)=O(f(n)),T2(n)=O(g(n));那么T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n)))。

3.乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

  • 刚讲了一个复杂度分析中的加法法则,这儿还有一个乘法法则。类比一下,你应该能“猜到”公式。如果T1(n)=O(f(n)),T2(n)=O(g(n));那么T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n))。

假设T1(n) = O(n),T2(n) = O(n2),则T1(n) * T2(n) = O(n3)。落实到具体的代码上,可以把乘法法则看成是嵌套循环,举个例子。

int cal(int n) {
	int ret = 0; 
	int i = 1;
	for (; i < n; ++i) {
		ret = ret + f(i);
	} 
} 

int f(int n) {
	int sum = 0;
	int i = 1;
	for (; i < n; ++i) {
		sum = sum + i;
	} 
	return sum;
}

单独看cal()函数。假设f()只是一个普通的操作,那第4~6行的时间复杂度就是,T1(n) = O(n)。但f()函数本身不是一个简单的操作,它的时间复杂度T2(n)=O(n),所以,整个cal()函数的时间复杂度就是,T(n) = T1(n) * T2(n) = O(n*n) = O(n2)。

讲了三种复杂度的分析技巧。不过,你并不用刻意去记忆。实际上,复杂度分析这个东西关键在于“熟练”。你只要多看案例,多分析,就能做到“无招胜有招”。

4.几种常见时间复杂度分析

虽然代码千差万别,但是常见的复杂度量级并不多。总结一下,这些复杂度量级几乎涵盖了你今后可以接触的所有代码的复杂度量级。
常见时间复杂度
罗列的复杂度量级,可以粗略地分为两类,多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2n)和O(n!)。当数据规模n越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。关于NP时间复杂度不展开讲,主要看几种常见的多项式时间复杂度。

1.O(1)

  • 必须明确一个概念,O(1)只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。这段代码即便有3行,它的时间复杂度也是O(1),而不是O(3)。
int i = 8;
int j = 6;
int sum = i + j;

只要代码的执行时间不随n的增大而增长,时间复杂度都记作O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

2.O(logn)、O(nlogn)

  • 对数阶时间复杂度非常常见,也是最难分析的一种时间复杂度,举例说明。
i=1;
while (i <= n) {
i = i * 2;

第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。从代码中可以看出,变量i的值从1开始取,每循环一次就乘以2。当大于n时,循环结束。实际上,变量i的取值就是一个等比数列。通过2x=n求解,x=log2n。所以,这段代码的时间复杂度为O(log2n)。把代码稍微改下,你再看看,这段代码的时间复杂度是多少?

i=1;
while (i <= n) {
	i = i * 3;
}

很简单就能看出来,这段代码的时间复杂度为O(log3n)。不管是以2为底、以3为底,还是以10为底,我们可以把所有对数阶的时间复杂度都记为O(logn)。为什么呢?

我们知道,对数之间是可以互相转换的,log3n就等于log32 * log2n,所以O(log3n) = O(C * log2n),其中C=log32是一个常量。在采用大O标记复杂度的时候,可以忽略系数,即O(Cf(n)) = O(f(n))。所以,O(log2n) 就等于O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为O(logn)。

如果理解了O(logn),那O(nlogn)就容易理解了。还记得我们刚讲的乘法法则吗?如果一段代码的时间复杂度是O(logn),我们循环执行n遍,时间复杂度O(nlogn)。而且,O(nlogn)也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是O(nlogn)。

3.O(m+n)、O(m*n)

  • 再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。老规矩,先看代码!
int cal(int m, int n) {
	int sum_1 = 0;
	int i = 1;
	for (; i < m; ++i) {
		sum_1 = sum_1 + i;
	}
	
	int sum_2 = 0;
	int j = 1;
	for (; j < n; ++j) {
		sum_2 = sum_2 + j;
	}
	
	return sum_1 + sum_2;
}

从代码中可以看出,m和n是表示两个数据规模。我们无法事先评估m和n谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其一个。所以,上面代码的时间复杂度就是O(m+n)。针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。

5.空间复杂度分析

前面花了很长时间讲大O表示法和时间复杂度分析,理解了前面讲的内容,空间复杂度分析方法学起来就非常简单了。时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。

void print(int n) {
	int i = 0;
	int[] a = new int[n];
	for (i; i <n; ++i) {
		a[i] = i * i;
	}
	
	for (i = n-1; i >= 0; --i) {
		print out a[i]
	}
}

跟时间复杂度分析一样,可以看到第2行代码中,我们申请了一个空间存储变量i,但是它是常量阶的,跟数据规模n没有关系,所以我们可以忽略。第3行申请了一个大小为n的int类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是O(n)。我们常见的空间复杂度就是O(1)、O(n)、O(n2 ),像O(logn)、O(nlogn)这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。

6.内容小结

复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率
越低。常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n2 )。几乎所有的数据结构和算法的复杂度都跑不出这几个。
常见的时间复杂度复杂度分析并不难,关键在于多练。每次看到代码的时候,简单的一眼就能看出其复杂度,难的稍微分析一下就能得出答案。(多思考多练习)

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页