人间天堂——大美青海——天镜祁连

祁连县隶属青海省海北藏族自治州因地处祁连山中段腹地而得名,北邻古丝绸之路的首要通道甘肃河西走廊,故有青海“北大门”之称。“祁连”系匈奴语,匈奴呼天为“祁连”,祁连山即“天山”之意。境内平均海拔3169米,属典型的高原大陆性气候。

 

 

祁连县长期以来,各民族和睦相处,共同繁荣,共同进步,孕育了汉文化和少数民族文化相互交融的多元文化。阿柔“逗曲”、藏族“ 拉伊”,“花儿”,“ 社火”等彰显了各民族之间不同的文化底蕴。数千年来,世居在此的先民们自由的信仰不同宗教,形成了藏传佛教、 伊斯兰教等多宗教并存的宗教文化。以寺沟口遗址、夏塘东台遗址为代表的 卡约文化遗址,以宋代的古方城、 三角城、元代的峨堡古城等为代表的古建筑,以 阿柔大寺、上庄清真寺等为代表的宗教寺院成为祁连灿烂的多元文化瑰宝。

 

 

 

卓尔山属于 丹霞地貌,国家AAAA级景区,由红色砂岩、砾岩组成。藏语称为 祁连县\"宗穆玛釉玛\",意为美丽的红润皇后。卓尔山景区项目建设地位于祁连县八宝镇,紧靠八宝河与藏区 神山阿咪东索(牛心山)隔河相望。站在卓儿山顶视野极度开阔,四周没有任何遮拦,山对面是一山尽览四季景色的牛心山,左右两侧分别是拉洞峡和白杨沟风景区,背面是连绵起伏的祁连山,山脚下滔滔八宝河像一条白色的 哈达环绕在县城周边……

 

 

祁连山的雪线之上,常常会出现逆反的生物奇观。在浅雪的山层之中,有名为雪山草甸植物的蘑菇状蚕缀,还有珍贵的药材——高山雪莲,以及一种生长在风蚀的岩石下的雪山草。因此,雪莲、蚕缀、雪山草又合称为祁连山雪线上的“岁寒三友”

 

 

在这里,您可以喝到正宗鹿茸血青稞酒,您可以品到鲜香酥油奶茶,您可以吃到纯粹的黑牦牛酸奶,您可以尝到羊粪蛋煨锟锅馍馍,您可以亲手拌石磨手工糌粑,还有翻跟头、羊肉串、牦牛壮骨汤等共计十二道特色美食。在这里,你可以穿上藏袍,搭上褡裢,挂上腰刀,批上羊皮,做一个草原上的牧民。

 

 

80%的人都看过的文章

《超市管理系统:构建与解析》 超市管理系统是一个综合性的信息系统,涵盖进货、销售、库存以及人员管理等多个方面。本文将深入探讨其构建过程,主要涉及数据库设计和Oracle数据库的应用。系统分析和设计会借助E-R图、数据流图、数据字典和关系模式等工具。 E-R图(实体-关系图)是数据库设计中的重要环节,用于描述实体间关系。在超市管理系统中,E-R图包含商品、供应商、员工、客户等实体,以及它们之间的关系,比如商品由供应商提供,员工负责销售和进货事务,客户购买商品等。通过E-R图,可以清晰了解各实体属性及其相互关系,为后续数据模型建立奠定基础。 数据流图(DFD)用于分析系统的数据处理流程,描绘信息流在系统中的流动。超市管理系统的DFD包含“进货流程”“销售流程”“库存管理流程”等主要数据流,每个流程涵盖输入、处理和输出等部分。例如,进货流程涉及供应商信息接收、商品信息录入、订单确认等步骤。 数据字典(DD)是对系统中所有数据元素的定义和描述,为数据流图中数据流、数据存储和数据项提供详细说明。在超市管理系统中,数据字典会定义商品ID、供应商名称、库存量等关键数据的属性和格式,以确保数据的一致性和准确性。 关系模式是数据库设计中的概念模型,描述数据库中的表及其关系。在Oracle数据库中,超市管理系统的关系模式可能包括商品表、供应商表、库存表、订单表等。每张表都有特定字段和键,如商品表包含商品ID、名称、价格、库存等字段,供应商表包含供应商ID、名称、联系方式等字段。 数据库的选择对系统设计至关重要。Oracle数据库因其稳定性和强功能被广泛应用于商业系统。在超市管理系统中,Oracle能够支持复杂查询,保证高效的数据操作和事务处理,确保系统顺畅运行。 “超市系统.zip”文件包含了构建全面超市管理系统的全部要素,涵盖系统分析、数据库设计以及实际数据库文件等环节,体现了信息技术在日
数据集是一个专注于工业锅炉运行的时间序列数据集,该数据集为研究工业锅炉的性能、效率以及故障预测提供了丰富的信息资源。工业锅炉是许多工业生产过程中的关键设备,用于产生蒸汽或热水,以满足加热、发电或驱动设备的需求。锅炉的运行状态直接影响生产效率、能源消耗以及设备寿命。因此,对锅炉运行数据的分析和监控至关重要。该数据集记录了工业锅炉在不同时间点的运行参数,帮助研究人员和工程师更好地理解锅炉的动态行为,优化运行策略,并提前发现潜在问题。 数据集以时间序列的形式呈现,涵盖了锅炉运行过程中的多种关键参数。这些参数可能包括但不限于:锅炉的温度、压力、燃料消耗量、蒸汽产量、水位、燃烧效率等。每个数据点都带有时间戳,精确记录了参数的测量时间,从而能够清晰地展示锅炉运行状态随时间的变化趋势。 数据集的规模和时间跨度可能较,能够覆盖锅炉在不同工况下的运行情况,例如在高负荷、低负荷、启动、停机等阶段的表现。这种全面的数据记录为机器学习模型的训练提供了丰富的样本,使其能够学习到锅炉在各种条件下的正常运行模式和异常模式。 该数据集具有广泛的应用价值。首先,它可以用于建立锅炉的性能模型,通过分析历史数据,预测锅炉在不同输入条件下的输出性能,从而优化运行参数,提高能源利用效率。其次,数据集可用于故障诊断和预测。通过分析正常和异常运行数据的差异,可以训练机器学习算法识别潜在故障模式,提前预警,减少设备停机时间和维修成本。 此外,该数据集还可用于研究锅炉的长期性能退化趋势,帮助制定合理的维护计划。对于学术研究者来说,它是一个理想的实验平台,可用于测试新的时间序列分析方法、预测算法和异常检测技术。数据集为工业锅炉的运行优化、故障预测和学术研究提供了宝贵的数据支持,是工业物联网和智能制造领域的重要资源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值