波束形成:系统模型

系统模型

1. 接收信号

  令信号的载波为 e j ω t e^{j\omega t} ejωt,并以平面波形式在空间沿波数向量 k \mathbf{k} k的方向传播,设基准点处的信号为 s ( t ) e j ω t s\left(t\right)e^{j\omega t} s(t)ejωt,则距离基准点 R \mathbf{R} R处的阵元接收的信号为
s r ( t ) = s ( t − 1 c R T α ) exp ⁡ [ j ( ω t − R T k ) ] s_r\left(t\right)=s\left(t-\dfrac{1}{c}\mathbf{R}^T\alpha\right)\exp\left[j\left(\omega t-\mathbf{R}^T\mathbf{k}\right)\right] sr(t)=s(tc1RTα)exp[j(ωtRTk)]
式中, k k k为波数向量; α = k / ∣ k ∣ \alpha=\mathbf{k}/\left|\mathbf{k} \right| α=k/k为电磁波传播方向的单位向量; ∣ k ∣ = ω / c = 2 π / λ \left|\mathbf{k} \right| =\omega/c=2\pi/\lambda k=ω/c=2π/λ为波数,其中 c c c为光速, λ \lambda λ为电磁波的波长; ( 1 / c ) R T α \left(1/c\right)\mathbf{R}^T\alpha (1/c)RTα为信号相对于基准点的延迟时间; R T k \mathbf{R}^T\mathbf{k} RTk为电磁波传播到离基准点 R \mathbf{R} R处的阵元相对于电磁波传播到基准点的滞后相位。 θ \theta θ为电磁波传播俯仰角, φ \varphi φ是方向角,波束向量可表示为
k = k [ sin ⁡ θ cos ⁡ φ , sin ⁡ θ sin ⁡ φ , cos ⁡ θ ] T \mathbf{k}=k\left[\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta\right]^T k=k[sinθcosφ,sinθsinφ,cosθ]T

  电磁波从电辐射源以球面波向外传播,只要离辐射源足够远,在接收的局部区域,球面波就可以近似为平面波。雷达和通信信号的传播一般都满足这一远场条件。

2. 接收数据模型

  设在空间有 M M M个阵元组成的阵列,将阵列从1到 M M M编号,并以阵元1作为基准或参考点。设各阵元为全向天线,相对于基准点的位置向量分别为 R i ( i = 1 , 2 , ⋯   , M ) \mathbf{R}_i\left(i=1,2,\cdots,M\right) Ri(i=1,2,,M)。若基准点处的接收信号为 s ( t ) e j ω t s\left(t\right)e^{j\omega t} s(t)ejωt,则各阵元上的接收信号分别为
s i ( t ) = s ( t − 1 c R i T α ) exp ⁡ [ j ( ω t − R i T k ) ] s_i\left(t\right)=s\left(t-\dfrac{1}{c}\mathbf{R}_i^T\alpha\right)\exp\left[j\left(\omega t-\mathbf{R}_i^T\mathbf{k}\right)\right] si(t)=s(tc1RiTα)exp[j(ωtRiTk)]
在通信中,信号的频带 B B B比载波值 ω \omega ω小很多,所以 s ( t ) s\left(t\right) s(t)的变化相对缓慢,延时 ( 1 / c ) R T α ≪ ( 1 / B ) \left(1/c\right)\mathbf{R}^T\alpha\ll\left(1/B\right) (1/c)RTα(1/B),固有 s ( t − ( 1 / c ) R T α ) ≈ s ( t ) s\left(t-\left(1/c\right)\mathbf{R}^T\alpha\right)\approx s\left(t\right) s(t(1/c)RTα)s(t),即信号包络在各阵元上的差异可忽略,称为窄带信号。

  此外,阵列信号总是变换到基带信号在进行处理,因为阵列信号用向量形式表示为
s ( t ) = [ s 1 ( t ) , s 1 ( t ) , ⋯   , s 1 ( t ) ] T = s ( t ) [ e − j R 1 T k , e − j R 2 T k , ⋯   , e − j R M T k ] T \begin{aligned} \mathbf{s}\left(t\right) & =\left[s_1\left(t\right),s_1\left(t\right),\cdots,s_1\left(t\right)\right]^T\\ & =s\left(t\right)\left[e^{-j\mathbf{R}_1^T\mathbf{k}},e^{-j\mathbf{R}_2^T\mathbf{k}},\cdots,e^{-j\mathbf{R}_M^T\mathbf{k}}\right]^T \end{aligned} s(t)=[s1(t),s1(t),,s1(t)]T=s(t)[ejR1Tk,ejR2Tk,,ejRMTk]T
式中,向量部分称为方向向量,因为当波长和阵列的几何结构确定时,该向量只与到达波的空间角量 θ \theta θ φ \varphi φ有关,方向向量记作 a ( θ , ϕ ) \mathbf{a}\left(\theta,\phi\right) a(θ,ϕ)

  对于一维线阵,方向角为 θ \theta θ时, a \mathbf{a} a的具体计算式为
a ( θ ) = [ exp ⁡ ( j 2 π f x 1 sin ⁡ θ / c ) exp ⁡ ( j 2 π f x 2 sin ⁡ θ / c ) ⋮ exp ⁡ ( j 2 π f x M sin ⁡ θ / c ) ] \mathbf{a}\left(\theta\right) = \begin{bmatrix} \exp\left(j2\pi fx_1\sin\theta/c\right)\\ \exp\left(j2\pi fx_2\sin\theta/c\right)\\ \vdots\\ \exp\left(j2\pi fx_M\sin\theta/c\right)\\ \end{bmatrix} a(θ)=exp(j2πfx1sinθ/c)exp(j2πfx2sinθ/c)exp(j2πfxMsinθ/c)

  对于三维任意阵列,方向角为 ( θ , ϕ ) \left(\theta,\phi\right) (θ,ϕ)时, a \mathbf{a} a的具体计算式为
a ( θ , ϕ ) = [ exp ⁡ ( j 2 π f ( x 1 sin ⁡ θ cos ⁡ ϕ + y 1 sin ⁡ θ sin ⁡ ϕ + z 1 cos ⁡ θ ) / c ) exp ⁡ ( j 2 π f ( x 2 sin ⁡ θ cos ⁡ ϕ + y 2 sin ⁡ θ sin ⁡ ϕ + z 2 cos ⁡ θ ) / c ) ⋮ exp ⁡ ( j 2 π f ( x M sin ⁡ θ cos ⁡ ϕ + y M sin ⁡ θ sin ⁡ ϕ + z M cos ⁡ θ ) / c ) ] \mathbf{a}\left(\theta,\phi\right) = \begin{bmatrix} \exp\left(j2\pi f\left(x_1\sin\theta\cos\phi+y_1\sin\theta\sin\phi+z_1\cos\theta\right)/c\right)\\ \exp\left(j2\pi f\left(x_2\sin\theta\cos\phi+y_2\sin\theta\sin\phi+z_2\cos\theta\right)/c\right)\\ \vdots\\ \exp\left(j2\pi f\left(x_M\sin\theta\cos\phi+y_M\sin\theta\sin\phi+z_M\cos\theta\right)/c\right)\\ \end{bmatrix} a(θ,ϕ)=exp(j2πf(x1sinθcosϕ+y1sinθsinϕ+z1cosθ)/c)exp(j2πf(x2sinθcosϕ+y2sinθsinϕ+z2cosθ)/c)exp(j2πf(xMsinθcosϕ+yMsinθsinϕ+zMcosθ)/c)

  当有 K K K个信源时,到达波的方向向量组成一个矩阵
A = [ a ( θ 1 , φ 1 ) , a ( θ 2 , φ 2 ) , ⋯   , a ( θ K , φ K ) ] \mathbf{A}=\left[\mathbf{a}\left(\theta_1,\varphi_1\right),\mathbf{a}\left(\theta_2,\varphi_2\right),\cdots,\mathbf{a}\left(\theta_K,\varphi_K\right)\right] A=[a(θ1,φ1),a(θ2,φ2),,a(θK,φK)]
该矩阵称为方向矩阵或响应矩阵,它表示所有信源的方向。改变空间角 θ \theta θ,使方向向量 a ( θ ) \mathbf{a}\left(\theta\right) a(θ) M M M为空间内扫描,所形成的曲面称为阵列流形
A = { a ( θ , φ ) ∣ θ , φ ∈ Θ } \mathcal{A} = \left\lbrace \mathbf{a}\left(\theta,\varphi\right) |\theta,\varphi\in\Theta\right\rbrace A={a(θ,φ)θ,φΘ}
式中, Θ = [ 0 , 2 π ) \Theta=\left[0,2\pi\right) Θ=[0,2π)是波达方向 θ \theta θ φ \varphi φ所有可能的取值的集合。因此,阵列流形 A \mathcal{A} A即是阵列方向向量的集合。阵列流形 A \mathcal{A} A包含了阵列几何结构、阵元模式、阵元间的耦合、频率等影响。

  因此,整个阵列接收到的数据为
x ( t ) = ∑ k = 1 K s k ( t ) + n ( t ) = A s ( t ) + n ( t ) \mathbf{x}\left(t\right)=\sum_{k=1}^{K}s_k\left(t\right)+\mathbf{n}\left(t\right) = \mathbf{A}\mathbf{s}\left(t\right)+\mathbf{n}\left(t\right) x(t)=k=1Ksk(t)+n(t)=As(t)+n(t)
式中, n ( t ) \mathbf{n}\left(t\right) n(t)为噪声信号向量。

3. 阵列输出模型

  阵列输出
y ( t ) = ∑ i = 1 M w i ∗ ( θ , φ ) x i ( t ) = w H ( θ , φ ) x ( t ) y\left(t\right)=\sum_{i=1}^{M}w^*_i\left(\theta,\varphi\right)x_i\left(t\right)=\mathbf{w}^H\left(\theta,\varphi\right)\mathbf{x}\left(t\right) y(t)=i=1Mwi(θ,φ)xi(t)=wH(θ,φ)x(t)
式中, w \mathbf{w} w为权重向量,是波束形成算法需要求解的关键。

4. 波束响应

  求解出权重向量,波束响应,即波束方向图为
F ( θ , φ ) = w H a ( θ , φ ) F\left(\theta,\varphi\right) = \mathbf{w}^H\mathbf{a}\left(\theta,\varphi\right) F(θ,φ)=wHa(θ,φ)

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页