快速在GitHub搭建一个规范的开源项目(五)

前面我们已经讲了如何在GitHub上创建一个团队,然后规范化开发流程,Issue创建与处理流程,以及如何接入CI和覆盖率报告。
传送门:
快速在GitHub搭建一个规范的开源项目(一)
快速在GitHub搭建一个规范的开源项目(二)
快速在GitHub搭建一个规范的开源项目(三)
快速在GitHub搭建一个规范的开源项目(四)

接下来本来是想跟大家讲一下如何发布一个开源项目到maven公库的,但是我去网上查了,发现别人已写的非常仔细了。这里我就不多讲了,参考下面这个链接。
发布代码到maven公库流程

后续我们也会将自己团队的开源项目发布到maven公库,最近还在移除项目中关于公司的敏感信息,所以我自己本人还没试😈😈😈。大家试过了有坑的话记得及时评论告诉我哦。
这是我们团队的几个开源项目,大家如果觉得不错的话可以给我们点个小星星哈😉😉😉
传送门👇👇👇
在自动测试中,针对dubbo接口进行mock的框架
通过dubbo实现的远程SPI解决方案
基于spring实现的策略框架

最后给大家附上项目的README.md规范

这里填项目图标,比如ci,单测覆盖率,license等等
[![Build Status](https://travis-ci.org/dscxieyong/datasource-spring-boot-starter.svg?branch=master)](https://travis-ci.org/dscxieyong/datasource-spring-boot-starter)
[![codecov](https://codecov.io/gh/dscxieyong/datasource-spring-boot-starter/branch/master/graph/badge.svg)](https://codecov.io/gh/dscxieyong/datasource-spring-boot-starter)
<h1 align="center">项目名称</h1>
[English](./README.md) | 简体中文
## 😲 原理
简单介绍一下原理图
## ✨ 特性
描述项目特性

## 🖥 支持环境
描述支持的环境

## 🏃‍♂️ 快速入门
	最好可以给一个demo的连接
### 📦 maven 依赖

### 后续步骤...

## 🔗 联系方式


## 🙆‍♀️许可
AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值