数据库系统原理

一、事务

概念


事务指的是满足 ACID 特性的一系列操作。在数据库中,可以通过 Commit 提交一个事务,也可以使用 Rollback 进行回滚。

四大特性


1. 原子性(Atomicity)

事务被视为不可分割的最小单元,要么全部提交成功,要么全部失败回滚。

2. 一致性(Consistency)

事务执行前后都保持一致性状态。在一致性状态下,所有事务对一个数据的读取结果都是相同的。

3. 隔离性(Isolation)

一个事务所做的修改在最终提交以前,对其它事务是不可见的。

4. 持久性(Durability)

一旦事务提交,则其所做的修改将会永远保存到数据库中。即使系统发生崩溃,事务执行的结果也不能丢失。可以通过数据库备份和恢复来保证持久性。

二、并发一致性问题

在并发环境下,一个事务如果受到另一个事务的影响,那么事务操作就无法满足一致性条件。

问题

1. 丢失修改

T1 和 T2 两个事务都对一个数据进行修改,T1 先修改,T2 随后修改,T2 的修改覆盖了 T1 的修改。


2. 读脏数据

T1 修改一个数据,T2 随后读取这个数据。如果 T1 撤销了这次修改,那么 T2 读取的数据是脏数据。


3. 不可重复读

T2 读取一个数据,T1 对该数据做了修改。如果 T2 再次读取这个数据,此时读取的结果和和第一次读取的结果不同。


4. 幻影读

T1 读取某个范围的数据,T2 在这个范围内插入新的数据,T1 再次读取这个范围的数据,此时读取的结果和和第一次读取的结果不同。


解决方法

产生并发不一致性问题主要原因是破坏了事务的隔离性,解决方法是通过并发控制来保证隔离性。

在没有并发的情况下,事务以串行的方式执行,互不干扰,因此可以保证隔离性。在并发的情况下,如果能通过并发控制,让事务的执行结果和某一个串行执行的结果相同,就认为事务的执行结果满足隔离性要求,也就是说是正确的。把这种事务执行方式称为 可串行化调度 。

并发控制可以通过封锁来实现,但是封锁操作需要用户自己控制,相当复杂。数据库管理系统提供了事务的隔离级别,让用户以一种更轻松的方式处理并发一致性问题。

三、封锁

封锁粒度


MySQL 中提供了两种封锁粒度:行级锁以及表级锁。

应该尽量只锁定需要修改的那部分数据,而不是所有的资源。锁定的数据量越少,发生锁争用的可能就越小,系统的并发程度就越高。

但是加锁需要消耗资源,锁的各种操作,包括获取锁,检查锁是否已经解除、释放锁,都会增加系统开销。因此封锁粒度越小,系统开销就越大。

在选择封锁粒度时,需要在锁开销和并发程度之间做一个权衡。

封锁类型

1. 排它锁与共享锁

  • 排它锁(Exclusive),简写为 X 锁,又称写锁。
  • 共享锁(Shared),简写为 S 锁,又称读锁。

有以下两个规定:

  1. 一个事务对数据对象 A 加了 X 锁,就可以对 A 进行读取和更新。加锁期间其它事务不能对 A 加任何锁。
  2. 一个事务对数据对象 A 加了 S 锁,可以对 A 进行读取操作,但是不能进行更新操作。加锁期间其它事务能对 A 加 S 锁,但是不能加 X 锁。

锁的兼容关系如下:

-XS
XNoNo
SNoYes

2. 意向锁

意向锁(Intention Locks)可以支持多粒度封锁。它本身是一个表锁,通过在原来的 X/S 锁之上引入了 IX/IS,用来表示一个事务想要在某个数据行上加 X 锁或 S 锁。

有以下两个规定:

  1. 一个事务在获得某个数据行对象的 S 锁之前,必须先获得 IS 锁或者更强的锁;
  2. 一个事务在获得某个数据行对象的 X 锁之前,必须先获得 IX 锁。

各种锁的兼容关系如下:

-XIXSIS
XNoNoNoNo
IXNoYesNoYes
SNoNoYesYes
ISNoYesYesYes

封锁协议

1. 三级封锁协议

一级封锁协议

事务 T 要修改数据 A 时必须加 X 锁,直到 T 结束才释放锁。

可以解决丢失修改问题,因为不能同时有两个事务对同一个数据进行修改,那么一个事务的修改就不会被覆盖。

T1T1
lock-x(A) 
read A=20 
 lock-x(A)
 wait
write A=19 
commit 
unlock-x(A) 
 obtain
 read A=19
 write A=21
 commit
 unlock-x(A)

二级封锁协议

在一级的基础上,要求读取数据 A 时必须加 S 锁,读取完马上释放 S 锁。

可以解决读脏数据问题,因为如果一个事务在对数据 A 进行修改,根据 1 级封锁协议,会加 X 锁,那么就不能再加 S 锁了,也就是不会读入数据。

T1T1
lock-x(A) 
read A=20 
write A=19 
 lock-s(A)
 wait
rollback 
A=20 
unlock-x(A) 
 obtain
 read A=20
 commit
 unlock-s(A)

三级封锁协议

在二级的基础上,要求读取数据 A 时必须加 S 锁,直到事务结束了才能释放 S 锁。

可以解决不可重复读的问题,因为读 A 时,其它事务不能对 A 加 X 锁,从而避免了在读的期间数据发生改变。

T1T1
lock-s(A) 
read A=20 
 lock-x(A)
 wait
read A=20 
commit 
unlock-s(A) 
 obtain
 read A=20
 write A=19
 commit
 unlock-X(A)

2. 两段锁协议

加锁和解锁分为两个阶段进行,事务 T 对数据 A 进行读或者写操作之前,必须先获得对 A 的封锁,并且在释放一个封锁之后,T 不能再获得任何的其它锁。

事务遵循两段锁协议是保证并发操作可串行化调度的充分条件。例如以下操作满足两段锁协议,它是可串行化调度。

lock-x(A)...lock-s(B)...lock-s(C)...unlock(A)...unlock(C)...unlock(B)

但不是必要条件,例如以下操作不满足两段锁协议,但是它还是可串行化调度。

lock-x(A)...unlock(A)...lock-s(B)...unlock(B)...lock-s(C)...unlock(C)...

四、隔离级别

1. 未提交读(READ UNCOMMITTED) 

事务中的修改,即使没有提交,对其它事务也是可见的。

2. 提交读(READ COMMITTED) 

一个事务只能读取已经提交的事务所做的修改。换句话说,一个事务所做的修改在提交之前对其它事务是不可见的。

3. 可重复读(REPEATABLE READ) 

保证在同一个事务中多次读取同样数据的结果是一样的。

4. 可串行化(SERIALIXABLE) 

强制事务串行执行。

四个隔离级别的对比 

隔离级别脏读不可重复读幻影读
未提交读YESYESYES
提交读NOYESYES
可重复读NONOYES
可串行化NONONO

五、多版本并发控制

(Multi-Version Concurrency Control, MVCC)是 MySQL 的 InnoDB 存储引擎实现隔离级别的一种具体方式,用于实现提交读和可重复读这两种隔离级别。而未提交读隔离级别总是读取最新的数据行,无需使用 MVCC;可串行化隔离级别需要对所有读取的行都加锁,单纯使用 MVCC 无法实现。

版本号

  • 系统版本号:是一个递增的数字,每开始一个新的事务,系统版本号就会自动递增。
  • 事务版本号:事务开始时的系统版本号。

InooDB 的 MVCC 在每行记录后面都保存着两个隐藏的列,用来存储两个版本号:

  • 创建版本号:指示创建一个数据行的快照时的系统版本号;
  • 删除版本号:如果该快照的删除版本号大于当前事务版本号表示该快照有效,否则表示该快照已经被删除了。

Undo 日志

InnoDB 的 MVCC 使用到的快照存储在 Undo 日志中,该日志通过回滚指针把一个数据行(Record)的所有快照连接起来。


实现过程

以下过程针对可重复读隔离级别。

1. SELECT

当开始新一个事务时,该事务的版本号肯定会大于当前所有数据行快照的创建版本号,理解这一点很关键。

多个事务必须读取到同一个数据行的快照,并且这个快照是距离现在最近的一个有效快照。但是也有例外,如果有一个事务正在修改该数据行,那么它可以读取事务本身所做的修改,而不用和其它事务的读取结果一致。

把没对一个数据行做修改的事务称为 T,T 所要读取的数据行快照的创建版本号必须小于 T 的版本号,因为如果大于或者等于 T 的版本号,那么表示该数据行快照是其它事务的最新修改,因此不能去读取它。

除了上面的要求,T 所要读取的数据行快照的删除版本号必须大于 T 的版本号,因为如果小于等于 T 的版本号,那么表示该数据行快照是已经被删除的,不应该去读取它。

2. INSERT

将当前系统版本号作为数据行快照的创建版本号。

3. DELETE

将当前系统版本号作为数据行快照的删除版本号。

4. UPDATE

将当前系统版本号作为更新后的数据行快照的创建版本号,同时将当前系统版本号作为更新前的数据行快照的删除版本号。可以理解为先执行 DELETE 后执行 INSERT。

快照读与当前读

1. 快照读

读取快照中的数据,可以减少加锁所带来的开销。

select * from table ....;

2. 当前读

读取最新的数据,需要加锁。以下第一个语句需要加 S 锁,其它都需要加 X 锁。

select * from table where ? lock in share mode;
select * from table where ? for update;
insert;
update;
delete;

六、Next-Key Locks

Next-Key Locks 也是 MySQL 的 InnoDB 存储引擎的一种锁实现。MVCC 不能解决幻读的问题,Next-Key Locks 就是为了解决这个问题而存在的。在可重复读隔离级别下,使用 MVCC + Next-Key Locks 可以解决幻读问题。

Record Locks

锁定的对象是索引,而不是数据。如果表没有设置索引,InnoDB 会自动在主键上创建隐藏的聚集索引,因此 Record Locks 依然可以使用。

Grap Locks

锁定一个范围内的索引,例如当一个事务执行以下语句,其它事务就不能在 t.c 中插入 15。

SELECT c FROM t WHERE c BETWEEN 10 and 20 FOR UPDATE;

Next-Key Locks

它是 Record Locks 和 Gap Locks 的结合。在 user 中有以下记录:

|   id | last_name   | first_name   |   age |
|------|-------------|--------------|-------|
|    4 | stark       | tony         |    21 |
|    1 | tom         | hiddleston   |    30 |
|    3 | morgan      | freeman      |    40 |
|    5 | jeff        | dean         |    50 |
|    2 | donald      | trump        |    80 |
+------|-------------|--------------|-------+

那么就需要锁定以下范围:

(-∞, 21]
(21, 30]
(30, 40]
(40, 50]
(50, 80]
(80, ∞)

七、关系数据库设计理论

函数依赖

记 A->B 表示 A 函数决定 B,也可以说 B 函数依赖于 A。

如果 {A1,A2,... ,An} 是关系的一个或多个属性的集合,该集合函数决定了关系的其它所有属性并且是最小的,那么该集合就称为键码。

对于 W->A,如果能找到 W 的真子集 W',使得 W'-> A,那么 W->A 就是部分函数依赖,否则就是完全函数依赖;

异常

以下的学生课程关系的函数依赖为 Sno, Cname -> Sname, Sdept, Mname, Grade,键码为 {Sno, Cname}。也就是说,确定学生和课程之后,就能确定其它信息。

SnoSnameSdeptMnameCnameGrade
1学生-1学院-1院长-1课程-190
2学生-2学院-2院长-2课程-280
2学生-2学院-2院长-2课程-1100

不符合范式的关系,会产生很多异常,主要有以下四种异常:

  1. 冗余数据:例如 学生-2 出现了两次。
  2. 修改异常:修改了一个记录中的信息,但是另一个记录中相同的信息却没有被修改。
  3. 删除异常:删除一个信息,那么也会丢失其它信息。例如如果删除了 课程-1,需要删除第一行和第三行,那么 学生-1 的信息就会丢失。
  4. 插入异常,例如想要插入一个学生的信息,如果这个学生还没选课,那么就无法插入。

范式

范式理论是为了解决以上提到四种异常。高级别范式的依赖于低级别的范式。


1. 第一范式 (1NF)

属性不可分;

2. 第二范式 (2NF)

每个非主属性完全函数依赖于键码。

可以通过分解来满足。

分解前 

SnoSnameSdeptMnameCnameGrade
1学生-1学院-1院长-1课程-190
2学生-2学院-2院长-2课程-280
2学生-2学院-2院长-2课程-1100

以上学生课程关系中,{Sno, Cname} 为键码,有如下函数依赖:

  • Sno, Cname -> Sname, Sdept, Mname
  • Sno -> Sname, Sdept
  • Sdept -> Mname
  • Sno -> Mname
  • Sno, Cname-> Grade

Grade 完全函数依赖于键码,它没有任何冗余数据,每个学生的每门课都有特定的成绩。

Sname, Sdept 和 Mname 都函数依赖于 Sno,而部分依赖于键码。当一个学生选修了多门课时,这些数据就会出现多次,造成大量冗余数据。

分解后 

关系-1

SnoSnameSdeptMname
1学生-1学院-1院长-1
2学生-2学院-2院长-2

有以下函数依赖:

  • Sno -> Sname, Sdept, Mname
  • Sdept -> Mname

关系-2

SnoCnameGrade
1课程-190
2课程-280
2课程-1100

有以下函数依赖:

  • Sno, Cname -> Grade

3. 第三范式 (3NF)

非主属性不传递依赖于键码。

上面的 关系-1 中存在以下传递依赖:Sno -> Sdept -> Mname,可以进行以下分解:

关系-11

SnoSnameSdept
1学生-1学院-1
2学生-2学院-2

关系-12

SdeptMname
学院-1院长-1
学院-2院长-2

4. BC 范式(BCNF)

所有属性不传递依赖于键码。

关系 STC(Sname, Tname, Cname, Grade) 的四个属性分别为学生姓名、教师姓名、课程名和成绩,它的键码为 (Sname, Cname, Tname),有以下函数依赖:

  • Sname, Cname -> Tname
  • Sname, Cname -> Grade
  • Sname, Tname -> Cname
  • Sname, Tname -> Grade
  • Tname -> Cname

存在着以下函数传递依赖:

  • Sname -> Tname -> Cname

可以分解成 SC(Sname, Cname, Grade) 和 ST(Sname, Tname),对于 ST,属性之间是多对多关系,无函数依赖。

八、数据库系统概述

基本术语

1. 数据模型

由数据结构、数据操作和完整性三个要素组成。

2. 数据库系统

数据库系统包含所有与数据库相关的内容,包括数据库、数据库管理系统、应用程序以及数据库管理员和用户,还包括相关的硬件和软件。

数据库的三层模式和两层映像

  • 外模式:局部逻辑结构
  • 模式:全局逻辑结构
  • 内模式:物理结构

1. 外模式

又称用户模式,是用户和数据库系统的接口,特定的用户只能访问数据库系统提供给他的外模式中的数据。例如不同的用户创建了不同数据库,那么一个用户只能访问他有权限访问的数据库。

一个数据库可以有多个外模式,一个用户只能有一个外模式,但是一个外模式可以给多个用户使用。

2. 模式

可以分为概念模式和逻辑模式,概念模式可以用概念-关系来描述;逻辑模式使用特定的数据模式(比如关系模型)来描述数据的逻辑结构,这种逻辑结构包括数据的组成、数据项的名称、类型、取值范围。不仅如此,逻辑模式还要描述数据之间的关系、数据的完整性与安全性要求。

3. 内模式

又称为存储模式,描述记录的存储方式,例如索引的组织方式、数据是否压缩以及是否加密等等。

4. 外模式/模式映像

把外模式的局部逻辑结构和模式的全局逻辑结构联系起来。该映像可以保证数据和应用程序的逻辑独立性。

5. 模式/内模式映像

把模式的全局逻辑结构和内模式的物理结构联系起来,该映像可以保证数据和应用程序的物理独立性。

九、关系数据库建模

ER 图

Entity-Relationship,有三个组成部分:实体、属性、联系。

1. 实体的三种联系

联系包含一对一,一对多,多对多三种。

如果 A 到 B 是一对多关系,那么画个带箭头的线段指向 B;如果是一对一,画两个带箭头的线段;如果是多对多,画两个不带箭头的线段。下图的 Course 和 Student 是一对多的关系。


2. 表示出现多次的关系

一个实体在联系出现几次,就要用几条线连接。下图表示一个课程的先修关系,先修关系出现两个 Course 实体,第一个是先修课程,后一个是后修课程,因此需要用两条线来表示这种关系。


3. 联系的多向性

虽然老师可以开设多门课,并且可以教授多名学生,但是对于特定的学生和课程,只有一个老师教授,这就构成了一个三元联系。


一般只使用二元联系,可以把多元关系转换为二元关系。


4. 表示子类

用一个三角形和两条线来连接类和子类,与子类有关的属性和联系都连到子类上,而与父类和子类都有关的连到父类上。


十、约束

1. 键码

用于唯一表示一个实体。

键码可以由多个属性构成,每个构成键码的属性称为码。

2. 单值约束

某个属性的值是唯一的。

3. 引用完整性约束

一个实体的属性引用的值在另一个实体的某个属性中存在。

4. 域约束

某个属性的值在特定范围之内。

5. 一般约束

比如大小约束,数量约束。

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页