Akka 指南 之「FSM」

温馨提示:Akka 中文指南的 GitHub 地址为「akka-guide」,欢迎大家StarFork,纠错。

FSM

依赖

为了使用有限状态机(Finite State Machine)Actor,你需要将以下依赖添加到你的项目中:

<!-- Maven -->
<dependency>
  <groupId>com.typesafe.akka</groupId>
  <artifactId>akka-actor_2.12</artifactId>
  <version>2.5.21</version>
</dependency>

<!-- Gradle -->
dependencies {
  compile group: 'com.typesafe.akka', name: 'akka-actor_2.12', version: '2.5.21'
}

<!-- sbt -->
libraryDependencies += "com.typesafe.akka" %% "akka-actor" % "2.5.21"

示例项目

你可以查看「FSM 示例项目」,以了解实际应用中的情况。

概述

FSM(有限状态机)是一个抽象的基类,它实现了一个 Akka Actor,并在「Erlang设 计原则」中得到了最好的描述。

FSM 可以描述为一组形式的关系:

  • State(S) x Event(E) -> Actions (A), State(S’)

这些关系被解释为如下含义:

  • 如果我们处于状态S,并且事件E发生,那么我们应该执行操作A,并向状态S’过渡。

一个简单的例子

为了演示AbstractFSM类的大部分特性,考虑一个 Actor,该 Actor 在消息到达突发(burst)时接收和排队消息,并在突发结束或收到刷新(flush)请求后发送它们。

首先,考虑使用以下所有导入语句:

import akka.actor.AbstractFSM;
import akka.actor.ActorRef;
import akka.japi.pf.UnitMatch;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import java.time.Duration;

我们的“Buncher” Actor 的协议(contract)是接受或产生以下信息:

static final class SetTarget {
  private final ActorRef ref;

  public SetTarget(ActorRef ref) {
    this.ref = ref;
  }

  public ActorRef getRef() {
    return ref;
  }

  @Override
  public String toString() {
    return "SetTarget{" + "ref=" + ref + '}';
  }
}

static final class Queue {
  private final Object obj;

  public Queue(Object obj) {
    this.obj = obj;
  }

  public Object getObj() {
    return obj;
  }

  @Override
  public String toString() {
    return "Queue{" + "obj=" + obj + '}';
  }
}

static final class Batch {
  private final List<Object> list;

  public Batch(List<Object> list) {
    this.list = list;
  }

  public List<Object> getList() {
    return list;
  }

  @Override
  public boolean equals(Object o) {
    if (this == o) return true;
    if (o == null || getClass() != o.getClass()) return false;

    Batch batch = (Batch) o;

    return list.equals(batch.list);
  }

  @Override
  public int hashCode() {
    return list.hashCode();
  }

  @Override
  public String toString() {
    final StringBuilder builder = new StringBuilder();
    builder.append("Batch{list=");
    list.stream()
        .forEachOrdered(
            e -> {
              builder.append(e);
              builder.append(",");
            });
    int len = builder.length();
    builder.replace(len, len, "}");
    return builder.toString();
  }
}

static enum Flush {
  Flush
}

启动它需要SetTarget,为要传递的Batches设置目标;Queue将添加到内部队列,而Flush将标记突发(burst)的结束。

// states
enum State {
  Idle,
  Active
}

// state data
interface Data {}

enum Uninitialized implements Data {
  Uninitialized
}

final class Todo implements Data {
  private final ActorRef target;
  private final List<Object> queue;

  public Todo(ActorRef target, List<Object> queue) {
    this.target = target;
    this.queue = queue;
  }

  public ActorRef getTarget() {
    return target;
  }

  public List<Object> getQueue() {
    return queue;
  }

  @Override
  public String toString() {
    return "Todo{" + "target=" + target + ", queue=" + queue + '}';
  }

  public Todo addElement(Object element) {
    List<Object> nQueue = new LinkedList<>(queue);
    nQueue.add(element);
    return new Todo(this.target, nQueue);
  }

  public Todo copy(List<Object> queue) {
    return new Todo(this.target, queue);
  }

  public Todo copy(ActorRef target) {
    return new Todo(target, this.queue);
  }
}

Actor 可以处于两种状态:没有消息排队(即Idle)或有消息排队(即Active)。它将保持Active状态,只要消息一直到达并且不请求刷新。Actor 的内部状态数据由发送的目标 Actor 引用和消息的实际队列组成。

现在让我们来看看我们的FSM Actor 的结构(skeleton):

public class Buncher extends AbstractFSM<State, Data> {
  {
    startWith(Idle, Uninitialized);

    when(
        Idle,
        matchEvent(
            SetTarget.class,
            Uninitialized.class,
            (setTarget, uninitialized) ->
                stay().using(new Todo(setTarget.getRef(), new LinkedList<>()))));

    onTransition(
        matchState(
                Active,
                Idle,
                () -> {
                  // reuse this matcher
                  final UnitMatch<Data> m =
                      UnitMatch.create(
                          matchData(
                              Todo.class,
                              todo ->
                                  todo.getTarget().tell(new Batch(todo.getQueue()), getSelf())));
                  m.match(stateData());
                })
            .state(
                Idle,
                Active,
                () -> {
                  /* Do something here */
                }));

    when(
        Active,
        Duration.ofSeconds(1L),
        matchEvent(
            Arrays.asList(Flush.class, StateTimeout()),
            Todo.class,
            (event, todo) -> goTo(Idle).using(todo.copy(new LinkedList<>()))));

    whenUnhandled(
        matchEvent(
                Queue.class,
                Todo.class,
                (queue, todo) -> goTo(Active).using(todo.addElement(queue.getObj())))
            .anyEvent(
                (event, state) -> {
                  log()
                      .warning(
                          "received unhandled request {} in state {}/{}",
                          event,
                          stateName(),
                          state);
                  return stay();
                }));

    initialize();
  }
}

基本策略是通过继承AbstractFSM类并将可能的状态和数据值指定为类型参数来声明 Actor。在 Actor 的主体中,DSL 用于声明状态机:

  • startWith定义初始状态和初始数据
  • when(<state>) { ... }是要处理的每个状态的声明(可能是多个状态,传递的PartialFunction将使用orElse连接)
  • 最后使用initialize启动它,它执行到初始状态的转换并设置定时器(如果需要)。

在这种情况下,我们从Idle状态开始,使用Uninitialized数据,其中只处理SetTarget()消息;stay准备结束此事件的处理,以避免离开当前状态,而using修饰符使 FSM 用包含目标 Actor 引用的Todo()对象替换内部状态(此时Uninitialized在这个点)。Active状态已声明状态超时,这意味着如果在 1 秒内没有收到消息,将生成FSM.StateTimeout消息。这与在这种情况下接收Flush命令的效果相同,即转换回Idle状态并将内部队列重置为空向量。但是消息是如何排队的呢?由于这两种状态下的工作方式相同,因此我们利用以下事实:未由when()块处理的任何事件都传递给whenUnhandled()块:

whenUnhandled(
    matchEvent(
            Queue.class,
            Todo.class,
            (queue, todo) -> goTo(Active).using(todo.addElement(queue.getObj())))
        .anyEvent(
            (event, state) -> {
              log()
                  .warning(
                      "received unhandled request {} in state {}/{}",
                      event,
                      stateName(),
                      state);
              return stay();
            }));

这里处理的第一个案例是将Queue()请求添加到内部队列并进入Active状态(如果已经存在的话,这显然会保持Active状态),但前提是在接收到Queue()事件时,FSM 数据没有Uninitialized。否则,在所有其他未处理的情况下,第二种情况只会记录一个警告,而不会更改内部状态。

唯一缺少的部分是Batches实际发送到目标的位置,为此我们使用了onTransition机制:你可以声明多个这样的块,如果发生状态转换(即只有当状态实际更改时),所有这些块都将尝试匹配行为。

onTransition(
    matchState(
            Active,
            Idle,
            () -> {
              // reuse this matcher
              final UnitMatch<Data> m =
                  UnitMatch.create(
                      matchData(
                          Todo.class,
                          todo ->
                              todo.getTarget().tell(new Batch(todo.getQueue()), getSelf())));
              m.match(stateData());
            })
        .state(
            Idle,
            Active,
            () -> {
              /* Do something here */
            }));

转换回调是由matchState构造的一个生成器,后跟零或多个state,它将当前state和下一个state作为一对状态的输入。在状态更改期间,旧的状态数据通过stateData()可用,如展示的这样,新的状态数据将作为nextStateData()可用。

  • 注释:可以使用goto(S)stay()实现相同的状态转换(当前处于状态S时)。不同之处在于,goto(S)会发出一个事件S->S,该事件可以由onTransition处理,而stay()则不会。

为了验证这个Buncher是否真的有效,使用「TestKit」编写一个测试非常容易,这里使用 JUnit 作为示例:

public class BuncherTest extends AbstractJavaTest {

  static ActorSystem system;

  @BeforeClass
  public static void setup() {
    system = ActorSystem.create("BuncherTest");
  }

  @AfterClass
  public static void tearDown() {
    TestKit.shutdownActorSystem(system);
    system = null;
  }

  @Test
  public void testBuncherActorBatchesCorrectly() {
    new TestKit(system) {
      {
        final ActorRef buncher = system.actorOf(Props.create(Buncher.class));
        final ActorRef probe = getRef();

        buncher.tell(new SetTarget(probe), probe);
        buncher.tell(new Queue(42), probe);
        buncher.tell(new Queue(43), probe);
        LinkedList<Object> list1 = new LinkedList<>();
        list1.add(42);
        list1.add(43);
        expectMsgEquals(new Batch(list1));
        buncher.tell(new Queue(44), probe);
        buncher.tell(Flush, probe);
        buncher.tell(new Queue(45), probe);
        LinkedList<Object> list2 = new LinkedList<>();
        list2.add(44);
        expectMsgEquals(new Batch(list2));
        LinkedList<Object> list3 = new LinkedList<>();
        list3.add(45);
        expectMsgEquals(new Batch(list3));
        system.stop(buncher);
      }
    };
  }

  @Test
  public void testBuncherActorDoesntBatchUninitialized() {
    new TestKit(system) {
      {
        final ActorRef buncher = system.actorOf(Props.create(Buncher.class));
        final ActorRef probe = getRef();

        buncher.tell(new Queue(42), probe);
        expectNoMessage();
        system.stop(buncher);
      }
    };
  }
}

引用

AbstractFSM 类

AbstractFSM抽象类是用于实现 FSM 的基类。它实现了 Actor,因为创建了一个 Actor 来驱动 FSM。

public class Buncher extends AbstractFSM<State, Data> {
  {
    startWith(Idle, Uninitialized);

    when(
        Idle,
        matchEvent(
            SetTarget.class,
            Uninitialized.class,
            (setTarget, uninitialized) ->
                stay().using(new Todo(setTarget.getRef(), new LinkedList<>()))));

    onTransition(
        matchState(
                Active,
                Idle,
                () -> {
                  // reuse this matcher
                  final UnitMatch<Data> m =
                      UnitMatch.create(
                          matchData(
                              Todo.class,
                              todo ->
                                  todo.getTarget().tell(new Batch(todo.getQueue()), getSelf())));
                  m.match(stateData());
                })
            .state(
                Idle,
                Active,
                () -> {
                  /* Do something here */
                }));

    when(
        Active,
        Duration.ofSeconds(1L),
        matchEvent(
            Arrays.asList(Flush.class, StateTimeout()),
            Todo.class,
            (event, todo) -> goTo(Idle).using(todo.copy(new LinkedList<>()))));

    whenUnhandled(
        matchEvent(
                Queue.class,
                Todo.class,
                (queue, todo) -> goTo(Active).using(todo.addElement(queue.getObj())))
            .anyEvent(
                (event, state) -> {
                  log()
                      .warning(
                          "received unhandled request {} in state {}/{}",
                          event,
                          stateName(),
                          state);
                  return stay();
                }));

    initialize();
  }
}
  • 注释AbstractFSM类定义了一个receive方法,该方法处理内部消息,并将其他所有信息传递给 FSM 逻辑(根据当前状态)。当覆盖receive方法时,请记住,例如状态超时处理取决于通过 FSM 逻辑实际传递消息。

AbstractFSM类采用两个类型参数:

  • 所有状态名的父类型,通常是枚举
  • AbstractFSM模块本身跟踪的状态数据的类型。

特别地,状态数据和状态名称一起描述状态机的内部状态;如果你坚持这个方案,并且不向 FSM 类添加可变字段,则可以在一些众所周知的地方显式地进行内部状态的所有更改。

定义状态

状态由方法的一个或多个调用定义。

  • when(<name>[, stateTimeout = <timeout>])(stateFunction)

给定的名称必须是与AbstractFSM类的第一个类型参数类型兼容的对象。此对象用作哈希键,因此必须确保它正确实现equalshashCode;尤其是它不能是可变的。最适合这些需求的是case对象。

如果给定stateTimeout参数,那么默认情况下,所有转换到该状态(包括保持)的操作都将接收该超时。使用显式超时启动转换可用于重写此默认值,有关详细信息,请参阅「Initiating Transitions」。在使用setStateTimeout(state, duration)进行操作处理期间,可以更改任何状态的状态超时。这将启用运行时配置,例如通过外部消息。

stateFunction参数是一个PartialFunction[Event, State],它使用状态函数生成器语法方便地给出,如下所示:

when(
    Idle,
    matchEvent(
        SetTarget.class,
        Uninitialized.class,
        (setTarget, uninitialized) ->
            stay().using(new Todo(setTarget.getRef(), new LinkedList<>()))));
  • 警告:需要为每个可能的 FSM 状态定义处理程序,否则在尝试切换到未声明的状态时将出现故障。

建议将状态声明为枚举,然后验证每个状态都有一个when子句。如果要使状态的处理“unhandled”(下面将详细介绍),则仍需要这样声明:

when(SomeState, AbstractFSM.NullFunction());

定义初始状态

每个 FSM 都需要一个起点(starting point),该起点使用:

startWith(state, data[, timeout])

可选的给定超时参数重写为所需初始状态给定的任何规范。如果要取消默认超时,请使用Duration.Inf

未处理的事件

如果状态不处理接收到的事件,则会记录警告。如果要在这种情况下执行其他操作,可以使用whenUnhandled(stateFunction)指定:

 whenUnhandled(
      matchEvent(
              X.class,
              (x, data) -> {
                log().info("Received unhandled event: " + x);
                return stay();
              })
          .anyEvent(
              (event, data) -> {
                log().warning("Received unknown event: " + event);
                return goTo(Error);
              }));
}

在此处理程序中,可以使用stateName方法查询 FSM 的状态。

  • 重要的:此处理程序不是堆叠的,这意味着每次调用whenUnhandled都会替换先前安装的(installed)处理程序。

启动转换

任何stateFunction的结果都必须是下一个状态的定义,除非终止 FSM,如「Termination from Inside」。状态定义可以是当前状态(如stay指令所述),也可以是goto(state)给出的不同状态。结果对象允许通过下面描述的修饰符进一步限定:

  • forMax(duration),此修饰符设置下一个状态的状态超时。这意味着计时器(timer)启动,到期时向 FSM 发送StateTimeout消息。此计时器在同时接收到任何其他消息时被取消;你可以依赖这样一个事实,即在干预消息之后将不会处理StateTimeout消息。此修饰符还可用于重写为目标状态指定的任何默认超时。如果要取消默认超时,请使用Duration.Inf
  • using(data),此修饰符将旧状态数据替换为给定的新数据。如果你遵循上面的建议,这是唯一一个修改内部状态数据的地方。
  • replying(msg),此修饰符向当前处理的消息发送答复,否则不会修改状态转换。

所有修饰符都可以链接起来,以实现一个漂亮简洁的描述:

when(
    SomeState,
    matchAnyEvent(
        (msg, data) -> {
          return goTo(Processing)
              .using(newData)
              .forMax(Duration.ofSeconds(5))
              .replying(WillDo);
        }));

实际上并非所有情况下都需要括号,但它们在视觉上区分修饰符和它们的参数,因此使代码更易于阅读。

  • 注释:请注意,return语句不能在when块或类似块中使用;这是一个 Scala 限制。使用if () ... else ...或者将其移动到方法定义中。

监视转换

概念上,“状态之间”会发生转换,这意味着在将任何操作放入事件处理块之后,这是显而易见的,因为下一个状态仅由事件处理逻辑返回的值定义。你不必担心设置内部状态变量的确切顺序,因为 FSM Actor 中的所有内容都在以单线程运行。

内部监控

到目前为止,FSM DSL 一直以状态和事件为中心。双视图(dual view)将其描述为一系列转换。这是由方法启用的

onTransition(handler)

它将动作与转换相关联,而不是与状态和事件相关联。处理程序是一个以一对状态作为输入的部分函数;不需要结果状态,因为无法修改正在进行的转换。

onTransition(
    matchState(Idle, Active, () -> setTimer("timeout", Tick, Duration.ofSeconds(1L), true))
        .state(Active, null, () -> cancelTimer("timeout"))
        .state(null, Idle, (f, t) -> log().info("entering Idle from " + f)));

也可以将接受两种状态的函数对象传递给onTransition,以将转换处理逻辑实现为一种方法:

public void handler(StateType from, StateType to) {
  // handle transition here
}

  onTransition(this::handler);

使用此方法注册的处理程序是堆叠(stacked)的,因此你可以在适合你的设计块中散置intersperse块。但是,应该注意的是,要为每个转换(transition)调用所有处理程序,而不仅仅是第一个匹配的处理程序。这是专门设计的,这样你就可以将某个方面的所有转换处理放在一个地方,而不必担心前面的声明会影响后面的声明;不过,操作仍然是按声明顺序执行的。

  • 注释:这种内部监控可用于根据转换构造你的 FSM,例如,在添加新的目标状态时,不能忘记在离开某个状态时取消计时器。

外部监控

外部 Actor 可以通过发送消息SubscribeTransitionCallBack(actorRef)来注册以获得状态转换的通知。命名的 Actor 将立即发送一条CurrentState(self, stateName)消息,并在触发状态更改时接收Transition(actorRef, oldState, newState)消息。

通过向 FSM Actor 发送UnsubscribeTransitionCallBack(actorRef),可以注销外部监控。

在不注销的情况下停止侦听器(listener)将不会从订阅列表中删除该侦听器;请在停止侦听器之前使用UnsubscribeTransitionCallback

定时器

除了状态超时之外,FSM 还管理由String名称标识的定时器(timers)。你可以使用

setTimer(name, msg, interval, repeat)

其中msg是将在持续时间interval结束后发送的消息对象。如果repeattrue,则计时器按interval参数给定的固定速率调度。在添加新计时器之前,任何具有相同名称的现有计时器都将自动取消。

计时器取消可以使用:

cancelTimer(name)

它保证立即工作,这意味着即使计时器已经启动并将其排队,也不会在调用后处理计划的消息。任何计时器的状态都可以通过以下方式获取:

isTimerActive(name)

这些命名的计时器补充状态超时,因为它们不受接收其他消息的影响。

从内部终止

通过将结果状态指定为以下方式来停止 FSM:

stop([reason[, data]])

原因必须是Normal(默认)、ShutdownFailure(reason)之一,并且可以给出第二个参数来更改终止处理期间可用的状态数据。

  • 注释:应该注意的是,停止不会中止动作,并立即停止 FSM。停止操作必须以与状态转换相同的方式从事件处理程序返回,但请注意,在when块中不能使用return语句。
when(
    Error,
    matchEventEquals(
        "stop",
        (event, data) -> {
          // do cleanup ...
          return stop();
        }));

可以使用onTermination(handler)指定在 FSM 停止时执行的自定义代码。处理程序是一个分部函数,它以StopEvent(reason, stateName, stateData)作为参数:

onTermination(
    matchStop(
            Normal(),
            (state, data) -> {
              /* Do something here */
            })
        .stop(
            Shutdown(),
            (state, data) -> {
              /* Do something here */
            })
        .stop(
            Failure.class,
            (reason, state, data) -> {
              /* Do something here */
            }));

对于whenUnhandled案例,此处理程序不堆叠,因此每次调用onTermination都会替换先前安装的处理程序。

从外部终止

当使用stop()方法停止与 FSM 关联的ActorRef时,将执行其postStop钩子。AbstractFSM类的默认实现是在准备处理StopEvent(Shutdown, ...)时执行onTermination处理程序。

  • 警告:如果你重写postStop并希望调用onTermination处理程序,请不要忘记调用super.postStop

有限状态机的测试和调试

在开发和故障排除过程中,FSM 和其他 Actor 一样需要关注。如「TestFSMRef」和以下所述,有专门的工具可用。

事件跟踪

在「配置」中设置akka.actor.debug.fsm可以通过LoggingFSM实例记录事件跟踪:

static class MyFSM extends AbstractLoggingFSM<StateType, Data> {
  @Override
  public int logDepth() {
    return 12;
  }

  {
    onTermination(
        matchStop(
            Failure.class,
            (reason, state, data) -> {
              String lastEvents = getLog().mkString("\n\t");
              log()
                  .warning(
                      "Failure in state "
                          + state
                          + " with data "
                          + data
                          + "\n"
                          + "Events leading up to this point:\n\t"
                          + lastEvents);
            }));
    // ...
  }
}

此 FSM 将在DEBUG级别记录日志:

  • 所有已处理的事件,包括StateTimeout和定时计时器消息
  • 每次设置和取消指定计时器
  • 所有状态转换

生命周期更改和特殊消息可以按照对「Actors」的描述进行记录。

滚动事件日志

AbstractLoggingFSM类向 FSM 添加了另一个功能:滚动事件日志(rolling event log),可在调试期间(用于跟踪 FSM 如何进入特定故障状态)或其他创造性用途中使用:

static class MyFSM extends AbstractLoggingFSM<StateType, Data> {
  @Override
  public int logDepth() {
    return 12;
  }

  {
    onTermination(
        matchStop(
            Failure.class,
            (reason, state, data) -> {
              String lastEvents = getLog().mkString("\n\t");
              log()
                  .warning(
                      "Failure in state "
                          + state
                          + " with data "
                          + data
                          + "\n"
                          + "Events leading up to this point:\n\t"
                          + lastEvents);
            }));
    // ...
  }
}

logDepth默认为零,这将关闭事件日志。

  • 警告:日志缓冲区是在 Actor 创建期间分配的,这就是使用虚拟方法调用完成配置的原因。如果要使用val进行重写,请确保其初始化发生在运行LoggingFSM的初始值设定项之前,并且不要在分配缓冲区后更改logDepth返回的值。

事件日志的内容可使用getLog方法获取,该方法返回IndexedSeq[LogEntry],其中最早的条目位于索引零。

示例

与 Actor 的become/unbecome相比,一个更大的 FSM 示例可以下载成一个随时可以运行「Akka FSM 示例」和一个教程。此示例的源代码也可以在「Akka Samples Repository」中找到。


英文原文链接FSM.


———— ☆☆☆ —— 返回 -> Akka 中文指南 <- 目录 —— ☆☆☆ ————

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值