【NVIDIA】ReSTIR GI: Path Resampling for Real-Time Path Tracing

学习中,大佬绕行勿喷…
在这里插入图片描述

即使现代 GPU 中出现了硬件加速光线追踪,在实时应用程序中,也只能在每个像素上追踪少量光线。这给路径追踪带来了重大挑战,即使使用最先进的降噪算法进行增强也是如此。虽然最近开发的 ReSTIR 算法 [Bitterli et al. 2020] 只需在每个像素上使用少量阴影光线即可实现具有数百万个光源的场景的高质量渲染,但仍需要有效的算法来对间接照明进行采样。

NVIDIA引入了一种适用于高度并行 GPU 架构的间接照明的有效路径采样算法。基于 ReSTIR 的屏幕空间时空重采样原则,该方法对路径追踪获得的多次反射间接照明路径进行重采样。这样做可以共享有关重要路径的信息,这些路径有助于图像中跨时间和像素的光照。与路径追踪相比,最终算法实现了显著的误差减少:在每帧每个像素一个样本的情况下,我们的算法在我们的测试场景中实现了 9.3 倍到 166 倍的 MSE 改进。它与降噪器结合使用,可在现代 GPU 上以实时帧速率实现高质量的路径追踪全局照明。

原文参见:ReSTIR GI: Path Resampling for Real-Time Path Tracing

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值