L
目录
1. 元数据管理实施方案总览
2. 元数据分类
3. 元数据标签体系
4. 表元数据
5. 血缘元数据
6. cli手工删除元数据
7. 基于graphiql查询血缘以及上下游数量
1. 元数据管理实施方案总览
2. 元数据分类
元数据按用途的不同分为两类:技术元数据( Technical Metadata)和业务元数据( Business Metadata )
2.1 技术元数据
技术元数据是存储关于数据仓库系统技术细节的数据,用于开发和管理数据仓库使用的数据。常见的技术元数据有:
分布式计算系统存储元数据:如Hive表、列、分区等信息。记录了表的表名。分区信息、责任人信息、文件大小、表类型,生命周期,以及列的字段名、字段类型、字段备注、是否是分区 段等信息。
分布式计算系统运行元数据:如 Spark上所有作业运行等信息:类似于 Job 日志,包括作业类型、实例名称、输入输出、 SQL 、执行时间。数据开发平台中数据同步、计算任务、任务调度等信息。
数据质量和运维相关元数据:如任务监控、运维报警、数据质量、故障等信息,包括任务监控运行日志、告警配置及运行日志、故障信息等。
2.2 业务元数据
业务元数据从业务角度描述了数据仓库中的数据,它提供了介于使用者和实际系统之间的语义层,使得不懂计算机技术的业务人员也能够看懂数据仓库中的数据。常见的业务元数据有:
Data 元数据:如维度及属性、业务过程、指标等的规范化定义,用于更好地管理和使用数据。
数据应用元数据:如数据报表、数据产品等的配置和运行元数据。
3. 元数据标签体系
利用元数据标签不仅可以节约研发人员的时间成本,同时对公司内部的非研发人员来说,也可以更直观地理解数据、利用数据,从而提升数据的研发效率。所以在datahub里可以预先建设domain共和glossary词库用于对数据进行打标。
基础标签
数据的存储情况
访问情况
数据安全等级
数仓标签
数据是增量/全量
是否可再生
数据的生命周期
业务标签
数据归属的主题域
产品线BU
业务类型
潜在标签
这类标签主要是为了说明数据潜在的应用场景
社交
媒体
广告
电商
金融
4. 表元数据
4.1 基于pull机制抽取元数据
Datahub的pull是基于插件的方式。可以检查数据源获取插件Source,转换插件transformer,获取插件Sink。插件安装命令如:pip install 'acryl-datahub[mysql]'
使用命令查看当前已安装的插件python3 -m datahub check plugins
web端ui方式
cli端yml方式
yml解析
模板
source:
type: mysql #数据源可以是hive等其他,相应的config配置有细微不同
config:
host_port: 172.16.8.69:3308
database: test
username: "root"
password: "root"
profiling: #hive中统计慎用,容易资源拉满,集群垮掉
enabled: True
include_field_min_value: True
include_field_max_value: True
stateful_ingestion: #开启状态,在拉取全数据时候会自动增删
enabled: True
remove_stale_metadata: True
#大部分情况transformer不需要配置
transformers:
- type: "simple_remove_dataset_ownership"
config:
owner_urns:
- "urn:li:corpuser:username1"
- "urn:li:corpuser:username2"
- "urn:li:corpGroup:groupname"
ownership_type: "PRODUCER"
#默认就是datahub-rest
sink:
type: "datahub-rest"
config:
server: 'http://localhost:8080'
pipeline_name: mysql_pipline #要支持状态,必须有pipline名称
datahub_api: # Optional. But if provided, this config will be used by the "datahub" ingestion state provider.
server: "http://localhost:8080"
source
更多config 详情见官方文档Input objects | DataHub (datahubproject.io)
source:
type: mysql #数据源可以是hive等其他,相应的config配置有细微不同
config:
host_port: 172.16.8.69:3308
database: test
username: "root"
password: "root"
profiling:
enabled: True
include_field_min_value: True
include_field_max_value: True
stateful_ingestion: #开启状态,在拉取全数据时候会自动增删
enabled: True
remove_stale_metadata: True
transformer(可不配置)
(1)添加标签
使用 simple_add_dataset_tags 模块给添加标签。
可以使用自己的模块函数通过 add_dataset_tags 自定义标签。
transformers:
- type: "simple_add_dataset_tags"
config:
tag_urns:
- "urn:li:tag:NeedsDocumentation"
- "urn:li:tag:Legacy"
(2)更改拥有者
使用 simple_remove_dataset_ownership 清除数据拥有者。
transformers:
- type: "simple_remove_dataset_ownership"
config: {}
使用 simple_add_dataset_ownership 添加一系列用户。
transformers:
- type: "simple_add_dataset_ownership"
config:
owner_urns:
- "urn:li:corpuser:username1"
- "urn:li:corpuser:username2"
- "urn:li:corpGroup:groupname"
ownership_type: "PRODUCER"
(3)根据数据集 urn 模式设置拥有者关系,为不同的数据集设置不同的拥有者。
transformers:
- type: "pattern_add_dataset_ownership"
config:
owner_pattern:
rules:
".*example1.*": ["urn:li:corpuser:username1"]
".*example2.*": ["urn:li:corpuser:username2"]
ownership_type: "DEVELOPER"
(4)标记数据集状态
不想在界面看到某个数据集,就需要将其标记为“已移除”。
transformers:
- type: "mark_dataset_status"
config:
removed: true
(5)添加数据集浏览路径
通过转换为数据集添加浏览路径。有 3 个可选变量:
ENV:传递的环境变量,默认 prod。
PLATFORM:DataHub 支持的平台,例如:mysql、postgres。
DATASET_PARTS:斜线分割的数据集名称,例如:database_name/[table_name]。
这样就会给 hive 数据库的 cn_test_dm_book.biz_batch_operate_record浏览路径 表生成一个:
/prod/hive/cn_test_dm_book/biz_batch_operate_record浏览路径。
transformers:
- type: "set_dataset_browse_path"
config:
path_templates:
- /ENV/PLATFORM/DATASET_PARTS
#不需要 ENV 并且固定路径中的某部分。
transformers:
- type: "set_dataset_browse_path"
config:
path_templates:
- /PLATFORM/marketing_db/DATASET_PARTS
这会为 MySQL 数据库 sales.orders 表产生浏览路径:/mysql/marketing_db/sales/orders。
可以设置多浏览路径。不同的人对同样的数据资产有不同的名字。
transformers:
- type: "set_dataset_browse_path"
config:
path_templates:
- /PLATFORM/marketing_db/DATASET_PARTS
- /data_warehouse/DATASET_PARTS
这样会生成 2 个浏览路径:
① /mysql/marketing_db/sales/orders
② /data_warehouse/sales/orders
sink
将元数据事件输出到标准输出。
用于试验和调试。
source:
source configs
sink:
type: "console"
① DataHub Rest
使用 GMS Rest 接口将元数据推送到 DataHub。
任何错误可以立即被报告。
还有一些字段可以设置:timeout_sec、token、extra_headers、max_threads。
source:
source configs
sink:
type: "datahub-rest"
config:
server: "http://datahubip:8080"
② DataHub Kafka
通过发布消息到 Kafka 将元数据推送至 DataHub。
异步的可以处理更高的流量。
有一些跟连接相关的字段配置信息。
source:
source configs
sink:
type: "datahub-kafka"
config:
connection:
bootstrap: "localhost:9092"
schema_registry_url: "http://datahubip:8081"
将元数据输出到文件。
使用 File 汇可以将源数据源的处理和推送从 DataHub 解耦。
也适合于调试目的。
使用 File 源可以从 File 汇的数据文件读取元数据。
source:
source configs
sink:
type: file
config:
filename: ./path/to/mce/file.json
yml模板
不论是ui方式还是cli方式都需要配置yml文件。例举如下我司常用的组件,更多模板详见Athena | DataHub (datahubproject.io)
mysql模板
能力
地位
笔记
数据探查 ✅ (可选)通过配置启用
检测已删除的实体 ✅ 通过有状态引入启用
域 ✅ 通过配置字段支持domain
平台实例 ✅ 默认启用
此插件提取以下内容:数据库、架构和表的元数据 通过可选的 SQL 分析与每个表关联的列类型和架构 表、行和列统计信息
正在上传…重新上传取消
clickhouse模板
能力
地位
笔记
数据探查 ✅ (可选)通过配置启用
检测已删除的实体 ✅ 通过有状态引入启用
此插件提取以下内容:
表、视图、实例化视图和字典的元数据
与每个表关联的列类型(*聚合函数和日期时间与时区除外)
通过可选的 SQL 分析对表、行和列进行统计信息。
表,视图,具体化视图和字典(带有CLICKHOUSE source_type)血缘
正在上传…重新上传取消
clickhouse-usage模板(统计ck使用详情)
能力
地位
笔记
数据探查 ✅ (可选)通过配置启用
检测已删除的实体 ✅ 通过有状态引入启用
此插件具有以下功能 -
对于特定的数据集,此插件引入以下统计信息 -
前 n 个查询。
顶级用户。
数据集中每列的用法。
将这些统计信息按天或小时粒度聚合到存储桶中。
hive模板
能力
地位
笔记
域 ✅ 通过配置字段支持domain
平台实例 ✅ 默认启用
此插件提取以下内容:
数据库、架构和表的元数据
与每个表关联的列类型
详细的表和存储信息
通过可选的 SQL 分析对表、行和列进行统计信息。
4.2. RESET-API方式
手工构建元数据(即使表不存在)
API-MEDTADA人工构建模板
正在上传…重新上传取消
5. 血缘元数据
5.1 基于push机制构建血缘元数据
SparkSql场景
自动解析sparksql依赖关系
sparksql模板
正在上传…重新上传取消
SparkSession场景
自动解析sparkrdd/df依赖关系
sparkSession模板
spark = SparkSession.builder \
.master("spark://spark-master:7077") \
.appName("test-application") \
.config("spark.jars.packages","io.acryl:datahub-spark-lineage:0.8.23") \
.config("spark.extraListeners","datahub.spark.DatahubSparkListener") \
.config("spark.datahub.rest.server", "http://ipt:8080") \
.enableHiveSupport() \
.getOrCreate()
5.2 基于Rest API机制构建血缘元数据
RESET-API-LINEAGE DEMO
手工构建表与表之间血缘
正在上传…重新上传取消
RESET-API-LINEAGE构建工具
正在上传…重新上传取消
mr hql程序基于REST-API构建血缘(走pub_execute_sql脚本)
mr hql回算程序基于REST-API构建血缘(走回算脚本)
waterdrop hive-ck REST-API 构建血缘(water drop脚本方式)
6. cli手工删除元数据
datahub delete --urn "urn:li:dataset:(urn:li:dataPlatform:clickhouse,DatabaseNameToBeIngested.add_record.product_user_new_20220117,PROD)" --hard(必须要硬删,软删可能会导致后续同名的表注册不进去)
删除开发环境中的所有数据集
datahub delete --env DEV --entity_type dataset
删除特定平台的所有容器
datahub delete --entity_type container --platform s3
删除开发环境中的所有管道和任务
datahub delete --env DEV --entity_type "datajob"
datahub delete --env DEV --entity_type "dataflow"
删除 PROD 环境中的所有 bigquery 数据集
datahub delete --env PROD --entity_type dataset --platform bigquery
--hard
删除所有外观仪表板和图表
datahub delete --entity_type dashboard --platform finereport --hard
datahub delete --entity_type chart --platform finereport
--hard
删除与查询匹配的所有数据集
datahub delete --entity_type dataset --query "_tmp" -n
7. 基于graphiql查询血缘以及上下游数量
172.16.8.69:9002/api/graphiql#,查询地址,更多文档详见DataHub GraphQL API | DataHub (datahubproject.io)
Demo
query{
dataset(
urn: "urn:li:dataset:(urn:li:dataPlatform:hive,cn_test_dim.biz_employee_account,PROD)" #查询的表
) {
lineage(
input: {direction: DOWNSTREAM, start: 0, count: 100, separateSiblings: true} #direction可选DOWNSTREAM或者UPSTREAM,start:从offset第几个起 count:返回结果数
) {
start #返回字段
count #返回字段
total #返回总共有多少条结果
relationships {
type
degree
entity {
type
urn
relationships(input: {types: [], start: 0, count: 100, direction: 查询该表关联的表,该层可以不查询
start
count
total
relationships {
type
entity {
urn
type
}
created {
actor
}
direction
}}}}}}}
查询表依赖上下游数量以及依赖明细UTILS
LineageUtils.py
# -*- coding: utf-8 -*-
from typing import List
import datetime
import datahub.emitter.mce_builder as builder
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.emitter.rest_emitter import DatahubRestEmitter
from datahub.metadata.com.linkedin.pegasus2avro.dataset import (
UpstreamLineage,
)
from datahub.metadata.schema_classes import *
class lineage_rest:
def __init__(self):
super().__init__()
self.gms_server_url = "http://ip:8080"
self.rest_emitter = DatahubRestEmitter(self.gms_server_url)
def add_chart_lineage(self, input_datasets: List[str],dest_chart_name: str,description:str,emitter: DatahubRestEmitter,platform:str):
last_modified = ChangeAuditStampsClass()
chart_info = ChartInfoClass(
title=dest_chart_name,
description= description,
lastModified=last_modified,
inputs=input_datasets,
)
chart_info_mcp = MetadataChangeProposalWrapper(
entityType='chart',
changeType=ChangeTypeClass.UPSERT,
entityUrn=builder.make_chart_urn(platform=platform, name=dest_chart_name),
aspectName="chartInfo",
aspect=chart_info,
)
# emit 元数据,这是一个阻塞调用
res = emitter.emit_mcp(chart_info_mcp)
def add_dashboard_lineage(self, charts_in_dashboard: List[str], dest_dashboard_name: str,
description: str, emitter: DatahubRestEmitter):
last_modified = ChangeAuditStampsClass()
dashboard_info = DashboardInfoClass(
title=dest_dashboard_name,
description=description,
lastModified=last_modified,
charts=charts_in_dashboard,
)
chart_info_mcp = MetadataChangeProposalWrapper(
entityType='dashboard',
changeType=ChangeTypeClass.UPSERT,
entityUrn=builder.make_dashboard_urn(platform="FineReport", name=dest_dashboard_name),
aspectName="dashboardInfo",
aspect=dashboard_info ,
)
# emit 元数据,这是一个阻塞调用
res = emitter.emit_mcp(chart_info_mcp)
#
def add_guanbi_metadata(self, input_datasets: List[str],dest_chart_name: str,description:str, externalUrl: str,chartlUrl:str, emitter: DatahubRestEmitter, customProperties,platform:str,platform_instance:str):
last_modified = ChangeAuditStampsClass()
chart_info = ChartInfoClass(
title=dest_chart_name,
description=description,
lastModified=last_modified,
inputs=input_datasets,
externalUrl=externalUrl,
chartUrl=chartlUrl,
customProperties=customProperties,
)
chart_info_mcp = MetadataChangeProposalWrapper(
entityType='chart',
changeType=ChangeTypeClass.UPSERT,
entityUrn=builder.make_chart_urn(platform=platform, name=dest_chart_name),
aspectName="chartInfo",
aspect=chart_info
)
# emit 元数据,这是一个阻塞调用
res = emitter.emit_mcp(chart_info_mcp)
def add_data_lineage(self, src_urns: List[str], dest_urn: str, emitter: DatahubRestEmitter,fineGrainedLineageList: List[FineGrainedLineageClass]):
# 构建数据血缘上流对象UpstreamClass实例
upstream_tables: List[UpstreamClass] = []
for urn in src_urns:
upstream_tables.append(
UpstreamClass(
dataset=urn,
type=DatasetLineageTypeClass.TRANSFORMED,
auditStamp=AuditStampClass(
time=int(datetime.datetime.now().timestamp() * 1000),
actor="urn:li:corpuser:datahub",
),
)
)
# 构建上流数据血缘对象实例
upstream_lineage = UpstreamLineage(upstreams=upstream_tables,fineGrainedLineages=fineGrainedLineageList)
# 构造一个MetadataChangeProposalWrapper对象
lineage_mcp = MetadataChangeProposalWrapper(
entityType="dataset",
changeType=ChangeTypeClass.UPSERT,
entityUrn=dest_urn,
aspectName="upstreamLineage",
aspect=upstream_lineage,
)
# emit 元数据,这是一个阻塞调用
res = emitter.emit(lineage_mcp)
def add_data_metadata(self, urn: str, emitter: DatahubRestEmitter,gitUrl:str,hdfsUrl:str,azkaban_Url:str,description:str):
print("git path{}".format(gitUrl))
description = '<a href='+gitUrl+'>点击查看源代码</a>\n\r'+hdfsUrl+azkaban_Url+description
dataset_properties = EditableDatasetPropertiesClass(
description=description,
)
# Construct a MetadataChangeProposalWrapper object.
metadata_event = MetadataChangeProposalWrapper(
entityType="dataset",
changeType=ChangeTypeClass.UPSERT,
entityUrn=urn,
aspectName="editableDatasetProperties",
aspect=dataset_properties,
)
# Emit metadata! This is a blocking call
res = emitter.emit(metadata_event)
def add_colume_lineage(self, src_urns: List[str], dest_urn: str, emitter: DatahubRestEmitter):
print(111)
if __name__ == '__main__':
# 构建一个GMS REST API Emitter。
rest = lineage_rest()
input_datasets: List[str] = [
builder.make_dataset_urn(platform="clickhouse", name="dataset1", env="PROD"),
builder.make_dataset_urn(platform="clickhouse", name="dataset1", env="PROD"),
]
rest.add_chart_lineage(input_datasets=input_datasets,dest_chart_name="char1",description="测试chart222",emitter=rest.rest_emitter)
charts_in_dashboard: List[str] = [
builder.make_chart_urn(platform="superset", name="char1")
]
rest.add_dashboard_lineage(charts_in_dashboard=charts_in_dashboard,dest_dashboard_name="dashbord1",description="测试dashboardt222",emitter=rest.rest_emitter)
# rest.add_data_metadata(urn=builder.make_dataset_urn("bigquery", "jjj"),emitter=rest.rest_emitter,externalUrl="https://gitlab.test.tech/big-data/dwh_finance/-/blob/master/ads/hql/ads_finance_batch_payment_detail.sql")
# rest.add_data_lineage(
# # src_urns=[builder.make_dataset_urn("hive", "cn_test_dim.biz_activity_info"), builder.make_dataset_urn("hive", "cn_test_dim.biz_after_sale_order")],
# src_urns=[builder.make_dataset_urn("bigquery", "jjj")],
# dest_urn=builder.make_dataset_urn("bigquery", "zzz"),
# emitter=rest.rest_emitter
# )
#LineageUtils.py
import argparse
import datahub.emitter.mce_builder as builder
import requests
from LineageDependencyUtils import LineageDependencyUtils
from datahub.metadata.com.linkedin.pegasus2avro.dataset import Upstream, DatasetLineageType, FineGrainedLineage, \
FineGrainedLineageUpstreamType, FineGrainedLineageDownstreamType
from linage_rest import lineage_rest
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util import Retry
from requests.structures import CaseInsensitiveDict
from sqllineage.runner import LineageRunner
import pymysql
import time
class MrLineage(object):
def __init__(self):
super().__init__()
args = self.load_parm()
self.sql_file = args.sql # 执行任务sql路径
self.src_table = args.src_table # 原始目标表
self.des_table = args.des_table # 目的表
self.src_plate_form = args.src_plate_form, # 来源平台
self.des_plate_form = args.des_plate_form, # 目的平台
self.branch = args.branch, # 目的平台
if self.sql_file:
project_path = self.sql_file.split("app/")[1]
sql_path = project_path.split("/")
self.project_name = sql_path[0] # 项目名称
self.git_path = "/".join(sql_path[1:])
else:
self.project_name = args.project_name # 项目名称
self.git_path = args.git_path
@staticmethod
def load_parm():
"""
加载参数
"""
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('-sql', help='需要执行的sql', required=False)
parser.add_argument('-src_table', help='原始目标表', required=False)
parser.add_argument('-des_table', help='目的表', required=False)
parser.add_argument('-src_plate_form', help='来源平台', required=False, default="hive")
parser.add_argument('-des_plate_form', help='目的平台', required=False, default="hive")
parser.add_argument('-branch', help='分支', required=False, default="master")
parser.add_argument('-project_name', help='项目名称', required=False, default="")
parser.add_argument('-git_path', help='sql git路径', required=False, default="")
arg = parser.parse_args()
return arg
"""
根绝执行的hql解析原始表与目的表
"""
@staticmethod
def lineage_4_hql(hql_file=None, sql_str=None):
"""
从静态sql语句解析血源
"""
if not sql_str:
with open(hql_file, 'r') as f:
sql = f.read()
else:
sql = sql_str
result = LineageRunner(sql=sql)
return result
def get_lineage(self):
"""
获取血缘
"""
result = self.lineage_4_hql(self.sql_file)
# 使用基础回算,用基础回算表做源表
source_tables_list = list(map(lambda x: str(x), result.source_tables))
target_tables_list = list(map(lambda x: str(x), result.target_tables))
colum_lineage = result.get_column_lineage()
# 字段级血缘list
fineGrainedLineageList = []
# 用于冲突检查的上游list
upStreamsList = []
# 遍历列级血缘
for columnTuples in colum_lineage:
# 上游list
upStreamStrList = []
# 下游list
downStreamStrList = []
# 逐个字段遍历
for column in columnTuples:
# 元组中最后一个元素为下游表名与字段名,其他元素为上游表名与字段名
# 遍历到最后一个元素,为下游表名与字段名
if columnTuples.index(column) == len(columnTuples) - 1:
downStreamFieldName = column.raw_name.__str__()
downStreamTableName = column.__str__().replace('.' + downStreamFieldName, '').__str__()
# print('下游表名:' + downStreamTableName)
# print('下游字段名:' + downStreamFieldName)
downStreamStrList.append(self.fieldUrn(downStreamTableName, downStreamFieldName))
else:
upStreamFieldName = column.raw_name.__str__()
upStreamTableName = column.__str__().replace('.' + upStreamFieldName, '').__str__()
# print('上游表名:' + upStreamTableName)
# print('上游字段名:' + upStreamFieldName)
upStreamStrList.append(self.fieldUrn(upStreamTableName, upStreamFieldName))
# 用于检查上游血缘是否冲突
upStreamsList.append(
Upstream(dataset=self.datasetUrn(upStreamTableName), type=DatasetLineageType.TRANSFORMED))
fineGrainedLineage = FineGrainedLineage(upstreamType=FineGrainedLineageUpstreamType.DATASET,
upstreams=upStreamStrList,
downstreamType=FineGrainedLineageDownstreamType.FIELD_SET,
downstreams=downStreamStrList)
fineGrainedLineageList.append(fineGrainedLineage)
if len(target_tables_list) > 1:
print("请注意,该组件不运行一个hql中执行多个任务,请拆分")
raise Exception
return source_tables_list, target_tables_list, fineGrainedLineageList
"""
基于原始表和目的表构建并发送血缘
"""
def rest_lineage(self, src_plate_form, des_plate_form, source_tables_list, target_tables_list,
fineGrainedLineageList):
src_urns = []
mysql_lineage_results = []
plate_form = self.des_plate_form[0]
project_id = ''
project_name = self.project_name
parent_project_name = ''
table_name = target_tables_list[0].split('.')[1]
full_table_name = target_tables_list[0]
flow_id = ''
job_id = ''
table_exec_cmd = ''
print('src_plate_form:' + src_plate_form[0])
print('des_plate_form:' + des_plate_form[0])
print('source_tables_list:')
print(source_tables_list)
print('target_tables_list:')
print(target_tables_list)
print('project_name:')
print(self.project_name)
dest_urn = builder.make_dataset_urn(des_plate_form[0], target_tables_list[0])
for source_table in source_tables_list:
table_level = target_tables_list[0].split('.')[0]
parent_full_table_name = source_table
parent_table_level = source_table.split('.')[0]
src_urns.append(builder.make_dataset_urn(src_plate_form[0], source_table))
print((plate_form, table_name, full_table_name, table_level, parent_full_table_name, parent_table_level,
project_id, flow_id, job_id, project_name
, table_exec_cmd))
mysql_lineage_results.append((plate_form, table_name, full_table_name, table_level, parent_full_table_name,
parent_table_level, project_id, flow_id, job_id, project_name
, table_exec_cmd))
ldu = LineageDependencyUtils(des_plate_form[0], target_tables_list[0], 3)
lineage_description = ldu.getUPStreamLineageDepencies() + '\n' + ldu.getDownStreamLineageDepencies()
# print(lineage_description)
self.branch = ['dev']
print('branch:')
print(self.branch)
rest = lineage_rest()
if self.sql_file:
hdfs_Url = "<a href=http://nn1.test.cn:9870/explorer.html#/user/hive/warehouse/{}.db/{}>点击查看hdfs文件</a>\n\r".format(
target_tables_list[0].split('.')[0], target_tables_list[0].split('.')[1])
# 根据表查询azkban调度
exec_id, flow_id, job_id, start_time, end_time = self.execute_check_sql(target_tables_list[0].split('.')[1])
azkaban_Url = "<a href='http://172.25.200.52:8082/executor?execid={}&job={}:{}'>点击查看azkaban调度日志</a>\n\r".format(
exec_id, str(flow_id).split(':')[0], job_id)
cost_time = format((end_time - start_time) / 1000 / 60, '.3f')
start_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(start_time / 1000))
end_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(end_time / 1000))
lineage_description = '最近一次开始运行时间:{},结束时间:{}.耗时{}分钟'.format(start_time, end_time,
cost_time) + '\n' + lineage_description
else:
hdfs_Url = ''
azkaban_Url = ''
rest.add_data_metadata(urn=dest_urn, emitter=rest.rest_emitter,
gitUrl="https://gitlab.test.tech/big-data/{}/-/blob/{}/{}".format(self.project_name,
self.branch[0],
self.git_path),
hdfsUrl=hdfs_Url, azkaban_Url=azkaban_Url, description=lineage_description)
# 血缘写入datahub
rest.add_data_lineage(
src_urns=src_urns,
dest_urn=dest_urn,
emitter=rest.rest_emitter,
fineGrainedLineageList=fineGrainedLineageList
)
# 血缘写入mysql
self.add_data_lineage_to_mysql(mysql_lineage_results=mysql_lineage_results,
target_table_name=target_tables_list[0])
# 血缘往mysql也写一份便于查询
def add_data_lineage_to_mysql(self, mysql_lineage_results: [], target_table_name):
# 连接数据库
conn = pymysql.connect(host='' # 连接名称,默认127.0.0.1
, user='' # 用户名
, passwd='' # 密码
, port=3309 # 端口,默认为3306
, db='' # 数据库名称
, charset='utf8' # 字符编码
)
cur = conn.cursor() # 生成游标对象
insert_sql = (
"insert into table_lineage (plate_form,table_name,full_table_name,table_level,parent_full_table_name,parent_table_level,project_id,flow_id,job_id,project_name,table_exec_cmd)"
"values(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s) on duplicate key update plate_form = values(plate_form), table_name = values(table_name),full_table_name = values(full_table_name),table_level = values(table_level),parent_full_table_name = values(parent_full_table_name),parent_table_level= values(parent_table_level),project_id= values(project_id),flow_id = values(flow_id),job_id = values(job_id),project_name = values(project_name),table_exec_cmd = values(table_exec_cmd)") # SQL语句
print(insert_sql)
cur.executemany(insert_sql, mysql_lineage_results) # 执行SQL语句
update_sql = (
"update table_lineage set parent_project_name='{}' where parent_full_table_name='{}'".format(
self.project_name, target_table_name)) # SQL语句
print(update_sql)
cur.execute(update_sql)
conn.commit()
cur.close() # 关闭游标
conn.close() # 关闭连接
def execute_check_sql(self, project_name):
# 连接数据库
conn = pymysql.connect(host='1'
, user='' # 用户名
, passwd='' # 密码
, port=3309 # 端口,默认为3306
, db='' # 数据库名称
, charset='utf8' # 字符编码
)
cur = conn.cursor() # 生成游标对象
sql = "select exec_id,flow_id,job_id,start_time,end_time from execution_jobs where job_id like '%{project_name}%' and start_time>(UNIX_TIMESTAMP(CAST(SYSDATE()AS DATE))*1000) ORDER BY exec_id DESC limit 1".format(
project_name=project_name) # SQL语句
print(sql)
cur.execute(sql) # 执行SQL语句
data = cur.fetchall() # 通过fetchall方法获得数据
exec_id = ''
flow_id = ''
job_id = ''
start_time = 0
end_time = 0
if len(data) > 0:
exec_id = data[:1][0][0] # 打印输出前2条数据
flow_id = data[:1][0][1] # 打印输出前2条数据
job_id = data[:1][0][2] # 打印输出前2条数据
start_time = data[:1][0][3] # 打印输出前2条数据
end_time = data[:1][0][4] # 打印输出前2条数据
if end_time == -1:
end_time = time.time() * 1000
print("end_time:{}".format(end_time))
cur.close() # 关闭游标
conn.close() # 关闭连接
return exec_id, flow_id, job_id, start_time, end_time
# 库名设置
def datasetUrn(self, tableName):
return builder.make_dataset_urn("hive", tableName) # platform = hive
# 表、列级信息设置
def fieldUrn(self, tableName, fieldName):
return builder.make_schema_field_urn(self.datasetUrn(tableName), fieldName)
def run(self):
"""
执行过程
1. 解析hql血缘
"""
global source_tables_list, target_tables_list, fineGrainedLineageList
if self.sql_file:
try:
source_tables_list, target_tables_list, fineGrainedLineageList = self.get_lineage()
except:
print("获取血缘失败")
else:
source_tables_list, target_tables_list = self.src_table.split(","), [self.des_table]
fineGrainedLineageList = []
try:
test_url = ""
headers = CaseInsensitiveDict()
headers["Content-Type"] = "application/json"
rq = requests.Session()
rq.mount('https://', HTTPAdapter(max_retries=Retry(total=0)))
resp = rq.get(test_url, headers=headers, timeout=2)
print("test status_code:")
print(resp.status_code)
if resp.status_code == 200:
self.rest_lineage(self.src_plate_form, self.des_plate_form, source_tables_list, target_tables_list,
fineGrainedLineageList)
print("发送血缘成功")
else:
print("服务器状态异常不发送血缘")
except Exception as ex:
print(ex)
print("test status:服务器报错不发送血缘")
print("发送血缘失败")
print("血缘运行结束")
if __name__ == '__main__':
lineage = MrLineage()
lineage.run()
基于DataHub元数据血缘管理实施方案
于 2023-03-21 14:32:10 首次发布
文章详细介绍了元数据管理的实施方案,包括元数据分类(技术元数据和业务元数据),元数据标签体系的构建,表元数据的抽取,以及血缘元数据的构建方法,如基于push和REST-API机制。此外,还涉及到了使用Datahub进行元数据操作,如CLI手工删除元数据,以及基于Graphiql查询血缘和上下游数量。
3524

被折叠的 条评论
为什么被折叠?



