AI智能体怎么干活?拆解“工具+记忆+推理”的协同密码
当你让AI“查本周上海天气,再结合数据写一份通勤建议周报”时,它不再像以前那样只扔给你一串温度数字,而是能自主拉取天气数据、套用周报模板、甚至根据雨天调整通勤提醒——这背后,藏着AI智能体(Agent)的核心能力:“工具调用+记忆+推理”的闭环协同。今天我们就用通俗的方式,拆解这个让AI从“单次问答”升级为“自主办事”的关键逻辑。

一、从“提需求”到“出结果”:AI智能体的5步工作流
其实AI智能体处理任务的过程,很像一个“全自动办事助手”的工作日常。我们以“生成上海本周通勤周报”为例,看看它的完整流程:
-
接收用户目标:把“模糊需求”变“清晰任务”
用户输入“查上海本周天气,写通勤建议周报”,智能体首先会“听懂”核心需求——不仅要“获取天气数据”,还要“转化为通勤场景的实用建议”,甚至默认需要“周报格式”(比如分日期、天气情况、通勤提示三栏)。这一步就像助手接收到任务时,先把模糊需求拆成具体要做的事。 -
推理规划:当“大脑”,定策略
这是智能体的“决策环节”。它会思考:“要完成这个任务,我需要哪些工具?步骤该怎么排?”
比如它会判断:① 得先获取上海本周的天气数据,所以需要调用“天气API”;② 要知道周报的标准格式,可能需要调用“文档模板工具”或读取历史存储的周报范例;③ 最后要根据天气情况提建议(比如周三有雨要提醒带伞、周五降温建议加衣),得确保数据和建议对应。
更聪明的是,如果某一步出问题——比如天气API暂时无法访问,它会立刻调整策略:“换另一个天气数据源调用”,而不是卡在原地。 -
工具调用:伸“手脚”,找资源
推理完

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



