sklearn实现特征选择--过滤法(通过方差、f_regression、卡方)

本文深入探讨如何使用sklearn库进行特征选择,重点介绍了通过方差筛选、f_regression和卡方检验等过滤法来优化数据集。通过对特征的统计分析,筛选出对模型预测最有影响的特征,提升模型性能。
摘要由CSDN通过智能技术生成
import numpy as np
from sklearn.feature_selection import VarianceThreshold.SelectKBest
from sklearn.feature_selection import f_regression
from sklearn.feature_selection import chi2
from sklearn.feature_selection import RFE
from sklearn.feature_selection import SelectFromModel
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值