特征含义
user_id 用户id
click_article_id 点击文章id
click_timestamp 点击时间戳
click_environment 点击环境
click_deviceGroup 点击设备组
click_os 点击操作系统
click_country 点击城市
click_region 点击地区
click_referrer_type 点击来源类型
article_id 文章id,与click_article_id相对应
category_id 文章类型id
created_at_ts 文章创建时间戳
words_count 文章字数
emb_1,emb_2,…,emb_249 文章embedding向量表示
提交结果
user_id,article_1,article_2,article_3,article_4,article_5。
其中user_id为用户id, article_1,article_2,article_3,article_4,article_5为预测用户点击新闻文章Top5的article_id依概率从高到低排序。
数据分析源代码
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.rc('font', family='SimHei', size=13)
import os,gc,re,warnings,sys
warnings.filterwarnings("ignore")
path = 'C:/ml_data/news/'
#####train
trn_click = pd.read_csv(path+'train_click_log.csv')
item_df = pd.read_csv(path+'articles.csv')
item_df = item_df.rename(columns={'article_id': 'click_article_id'}) #重命名,方便后续match
item_emb_df = pd.read_csv(path+'articles_emb.csv')
#####test
tst_click = pd.read_csv(path+'testA_click_log.csv')
# 对每个用户的点击时间戳进行排序
trn_click['rank'] = trn_click.groupby(['user_id'])['click_timestamp'].rank(ascending=False).astype(int)
tst_click['rank'] = tst_click.groupby(['user_id'])['click_timestamp'].rank(ascending=False).astype(int)
#计算用户点击文章的次数,并添加新的一列count
trn_click['click_cnts'] = trn_click.groupby(['user_id'])['click_timestamp'].transform('count')
tst_click['click_cnts'] = tst_click.groupby(['user_id'])['click_timestamp'].transform('count')
trn_click = trn_click.merge(item_df, how='left', on=['click_article_id'])
trn_click.user_id.nunique()
trn_click.groupby('user_id')['click_article_id'].count().min()