dotnet CBB 为什么决定推送 Tag 才能打包

通过推送 Tag 才打 NuGet 包的方法的作用不仅仅是让打包方便,让打包这个动作可以完全在本地执行,无需关注其他系统的使用步骤。更重要的是可以强制每个可能被安装的 NuGet 包版本都能有一个和他对应的 Tag 号,原因是为了解决回退到某个版本发现有一个坑,这个坑是因为某个依赖库的版本问题,此时我期望最小改动,我虽然能拿到这个库的代码,但是我很难知道我这个版本安装的 NuGet 库对应依赖库的哪个 commit 的代码

我之前每次需要追踪某个 NuGet 包对应的依赖库的源代码的版本的时候,都需要进入打包服务器,查看打包日志,在这样很坑玩了很久,公司的配置管理员干掉了服务器,删除了日志。而我接到一个很古老的项目需要修复某个坑,此时这个项目引用了一个底层库的古老版本,此时我不能升级底层库,应该底层库的改动量太大了。但是我又很难定位我现在项目引用的 NuGet 库对应的底层库的哪个 commit 代码。后面只能通过二分的方法,用了几天的开发才完成

所以看到了我上面的坑,小伙伴大概也就能知道为什么我期望将 Tag 和 NuGet 包关联了

在我现在团队的约定里面,只要添加了 alpha 也就是预览版,就可以随意推送测试的 Tag 让服务器帮你打包 NuGet 包,然后在其他的项目安装。为什么会鼓励这样做?原因是有小伙伴说我的某个项目的开发依赖某个库,但是假设这个库一定是合并到主分支之后才能打出 Tag 打包,也就是小伙伴在某个项目的代码将一直不能推送。同时小伙伴也不能在 csproj 里面引用某个私有的版本,因为私有的版本只有小伙伴自己能构建通过,其他小伙伴可构建不通过

假设小 A 需要开发项目 F 而这个项目以来库 L 的更改
而库 L 的更改如果没有合并到 master 分支,就不允许推送 Tag 打包
此时小 A 如果推送了代码,这个代码引用了还没有被发布的 L 库的代码,那么其他小伙伴将无法构建通过
此时小 A 如果推送了代码,这个代码引用了小 A 本地生成的 NuGet 库,那么其他小伙伴将找不到这个 NuGet 库,无法构建通过
如果小 A 不推送代码,只是写了一个 commit 但是这个 commit 包含了 L 库的代码,但是没有在 csproj 里面升级 L 库版本,那么在回滚代码的时候,进入到这个 commit 将构建失败
如果小 A 在 commit 里面升级到他本地生成的 NuGet 库,那么回滚代码的时候,因为公共服务器不存在小 A 的本地的 NuGet 库,依然会构建失败

此时有一个叫头像的小伙伴出了一个馊主意,小 A 虽然 L 库代码没有被合并,但是可以知道这个 L 库被合并之后分配的版本号,此时就在 csproj 里面更新到这个版本,然后通过本地打包的方法引用和推送。但是这个方法存在以下问题

  • 小伙伴本地打包第一次,发现翻车了,想要第二次打包,但是此时的版本号就重叠了,需要经过黑科技删除 NuGet 缓存重新构建,此时的效率特别低
  • 小伙伴在这次 commit 写的代码是他认为发布的时候将会添加的公开方法,但是实际上最后发布的时候更改了公开方法,此时回滚到这个 commit 虽然能下载到 NuGet 库,但是发现 L 库的公开方法不匹配,构建失败

这就是为什么选用推送 Tag 打包的原因,允许小伙伴自己选择预览版的版本推送,自动打包,这样就可以在项目中使用此Tag 打出的预览版的代码。此时的 commit 其他小伙伴也能构建,回滚代码的时候也可以在公共服务器找到 NuGet 包或切换到对应版本的源代码

在 VisualStudio 的帮助下,使用推Tag打包的成本非常低,因为在 VS 里面只需要简单5次点击加上输入版本号就能完成 Tag 新建和推送,详细请看 VisualStudio 如何快速添加一个 Git Tag 推送

在本地推Tag打包还有一个好处是能提升不少的效率,有很多团队例如我现在的团队之前就是使用 jenkins 打包,这个工具太强大而让上手和维护成本都特别高,加上使用的小伙伴太多,服务器性能不足,每次打包都需要等待缓慢的系统响应。而通过 Tag 打包的方式可以隐藏这部分动作,所有动作都在本地执行。只有最后一步推送需要依赖 Git 服务的网络

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值