槲寄、生下
码龄9年
关注
提问 私信
  • 博客:50,049
    50,049
    总访问量
  • 7
    原创
  • 2,317,973
    排名
  • 24
    粉丝
  • 0
    铁粉

个人简介:视频生成算法研究员

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2016-06-23
博客简介:

qq_35398033的博客

查看详细资料
个人成就
  • 获得96次点赞
  • 内容获得58次评论
  • 获得271次收藏
  • 代码片获得1,928次分享
创作历程
  • 8篇
    2020年
成就勋章
TA的专栏
  • 深度学习-基础
    2篇
  • LeeCode
    1篇
  • action recognition实验
  • MMAction
    1篇
  • 深度学习-虚拟环境配置
    3篇
兴趣领域 设置
  • 人工智能
    深度学习
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

367人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

商汤算法岗实习面经

商汤算法岗实习面经面试安排 :3轮技术面+1轮HR面一面(1小时):1.自我介绍:简单介绍一下自己的研究方向,研究成果,做了哪些实验2.详细描述一下做过的实验。怎么做的,为什么这么做,效果怎么样,结论是什么3.了解目标检测吗(我做的视频动作识别),问了一些目标检测的基础,IOU,NMS,Focal Loss,Focal Loss的缺点以及如何改进等等4.手撕代码:给定两个字符串str1和str2,再给定三个整数ic,dc,rc,分别代表插入、删除、替换一个字符的代价,返回将str1编辑成str2
原创
发布博客 2020.10.22 ·
3126 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

Python 多变量赋值的机制(以反转链表为例)

Python 多变量赋值的机制在刷LeeCode反转链表这道题时(输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL),遇到了一个很有意思的问题。以下是解答区给出的实现方法,采用多变量同时赋值# Definition for singly-linked list.# class ListNode:# def __init__(self, x):# self.val
原创
发布博客 2020.09.07 ·
587 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

Pytorch中的梯度回传与梯度清零

首先要明确在Pytorch当中,计算得到的梯度是默认累加的,而不是下次计算梯度就自动清零上一次的梯度值。这样做的好处有以下几点:1、减小multitask的内存消耗​ 在PyTorch中,multi-task任务一个标准的train from scratch流程为:for idx, data in enumerate(train_loader): xs, ys = data pred1 = model1(xs) pred2 = model2(xs) lo
原创
发布博客 2020.07.12 ·
11129 阅读 ·
9 点赞 ·
3 评论 ·
42 收藏

多GPU分布式训练详解

总的来说,分布式训练分为这几类:按照并行方式来分:模型并行 vs 数据并行按照更新方式来分:同步更新 vs 异步更新模型并行 vs 数据并行假设我们有n张GPU:模型并行:不同的GPU输入相同的数据,运行模型的不同部分,比如多层网络的不同层;数据并行:不同的GPU输入不同的数据,运行相同的完整的模型。当模型非常大,一张GPU已经存不下的时候,可以使用模型并行,把模型的不同部分交给不同的机器负责,但是这样会带来很大的通信开销,而且模型并行各个部分存在一定的依赖,规模伸缩性差。因此
原创
发布博客 2020.07.12 ·
2836 阅读 ·
2 点赞 ·
1 评论 ·
9 收藏

Ubantu16.04+CUDA10.0安装mmaction以及提取UCF101的frame和optical flow

Ubantu16.04+CUDA10.0安装mmaction以及提取UCF101的frame和optical flow研一刚转到视频动作识别方向,因为很多模型都需要光流输入,因此不得不安装第三方库提取光流。尽管现在该领域何凯明大佬的最新成果,Non-Local模块以及SlowFast-Net只用视频帧作为输入,无需光流就能碾压之前所有模型。但是对于视频的抽帧,提取光流,以及标准化为数据集等基本处理是必不可少的。在安装mmaction过程中踩坑无数,甚至有个问题到现在还没解决,所幸还算是安装成功了,至少能用
原创
发布博客 2020.06.02 ·
3754 阅读 ·
7 点赞 ·
35 评论 ·
33 收藏

cmake高版本安装及踩坑

目录安装步骤:遇到错误的解决办法:错误1:运行./bootstrap时出现报错:错误2:make install时出现报错:错误3:执行cmake --version时提示没有那个文件或目录:解决cmake时报错:CMake 3.8 or higher is required. You are running version 3.5.1提示目前的cmake版本过低的问题。安装步骤:查看当前cmake版本:cmake -version卸载当前cmake:(如果安装了ROS跳过此步)
转载
发布博客 2020.05.31 ·
25135 阅读 ·
63 点赞 ·
17 评论 ·
166 收藏

Linux中默认Python版本的切换

Linux中默认Python版本的切换进入/usr/bin文件夹下,打开命令行终端。2、进入虚拟环境所在文件夹,选取创建环境时随之设定创建的Python编译器。3、安装所需要的库。这里有两种方法。一种是直接按下图所示,点击 + 一个个安装,但是有可能没办法安装你所需要的版本,例如Pytorch就只有0.1和1.1两个版本。如果我需要的是0.4.1,显然就无法安装。使用第二种方法可以解决这个问题,直接在命令行终端,进入本虚拟环境,使用conda命令安装指定版本库即可。此外,为避免手动一个个安装库,还可
原创
发布博客 2020.05.31 ·
1777 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

Linux下anaconda创建虚拟环境以适应各种版本需求的深度学习代码(搭配Pycharm使用)

Linux下anaconda创建虚拟环境以适应各种版本需求的深度学习代码(搭配Pycharm使用)这是我的第一篇博客(汗颜),想借写博客来记录学习路上的各种心得以及爬的坑,同时对自己也是一种激励。因为各种模型使用的环境各不相同,因此针对不同的模型配置不同的虚拟环境来运行,能省去很多不必要的麻烦。因此将这个流程记录一下。anaconda创建虚拟环境这部分主要是参考以下两位博主的内容。使用anaconda创建虚拟环境: https://blog.csdn.net/amateur_hy/article/
原创
发布博客 2020.05.12 ·
1050 阅读 ·
4 点赞 ·
2 评论 ·
4 收藏