word使用 公式 编号 制表位 交叉引用 奇数页眉用论文题目偶数页眉用章标题 修改起始页码 文章目录公式居中编号右对齐 制表位法删除页码修改起始页码页眉页脚 奇数页眉用论文题目,偶数页眉用章标题如图1.1所示 如表x.x所示 交叉引用公式居中编号右对齐 制表位法(1)编号的前提是有多级列表(2) 选中公式所在的行-段落-制表位前提:正文为宋体小四,其他字体按需调整居中-17.29右-42.1字符(3)先输入括号,光标移到括号内(4)插入题注,可以按照需要新建标签。(5)效果(6)保存样式方便以后使用删除页码插入-页码-删除页码修改起始页码插入-页码-页
Google Colab免费GPU使用教程 3.1在谷歌云盘上创建文件夹当登录账号进入谷歌云盘时,系统会给予15G免费空间大小。由于Colab需要依靠谷歌云盘,故需要在云盘上新建一个文件夹。比如,我建立一个名为app的文件夹:3.2创建一个新的Colab Notebook在文件夹内的空白处右键 -> 更多 -> Colaboratory点击文件名可以重命名文件:3.3 设置免费的GPU它是很容易更换默认的硬件(None,GPU,TPU),通过 修改->笔记本设置或者代码执行程序->更改运行时类型来选择GPU,作为
mysql出现ERROR1698(28000):Access denied for user root@localhost错误解决方法 修改sudo vim /etc/mysql/mysql.conf.d/mysqld.cnf然后在这个配置文件中的[mysqld]这一块中加入skip-grant-tables这句话。重启service mysql restart
conda配置清华镜像 1.生成生成.condarc文件conda config2. 修改~/.condarc文件,写入源文件vim ~/.condarcchannels: - defaultsshow_channel_urls: truedefault_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda配置环境变量,ubuntu配置环境变量 1、在终端输入$sudo gedit /etc/profile,打开profile文件,profile是系统级的环境2、在文件末尾添加一行:export PATH=/home/xxx/anaconda2/bin:$PATH,其中,将“/home/grant/anaconda2/bin”替换为你实际的安装路径,保存。生效source /etc/profile...
ubuntu mysql安装卸载 文章目录卸载安装卸载查看MySQL依赖 : dpkg --list|grep mysql卸载: sudo apt-get remove mysql-common卸载: sudo apt-get autoremove --purge mysql-server-8.0(这里版本对应即可)清除残留数据: dpkg -l|grep ^rc|awk '{print$2}'|sudo xargs dpkg -P再次查看MySQL的剩余依赖项: dpkg --list|grep mysql(这里一般就
安装cuda https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.htmlhttps://developer.nvidia.com/cuda-toolkit-archive选择下载
transformers 模型保存缓存 win10 文章目录transformers包缓存模型transformers包缓存模型from transformers import AutoTokenizer, TFAutoModeltokenizer = AutoTokenizer.from_pretrained("bert-base-uncased",cache_dir='D://xx//transformermodel')# 模型会下载到这个文件夹下model = TFAutoModel.from_pretrained("bert-base-un
句向量,翻译,seq2seq框架,attention 文章目录什么是编码seq2seq框架seq2seq无注意力,效果不好seq2seq有注意力,效果好什么是编码把某些特征组合起来,变成新的特征。比如词向量到句向量seq2seq框架编码:机器产生对语言的理解解码:在理解的基础上做任务seq2seq无注意力,效果不好step->train_logits->encode(x)->encoder(x)->dec_embeddings(y)->decoder_train(x,y)# [Sequence to Sequ
tf-idf 文章目录tf-idftf-idf莫烦python环境:python3.6import numpy as npfrom collections import Counterimport itertoolsfrom visual import show_tfidf # this refers to visual.py in my [repo](https://github.com/MorvanZhou/NLP-Tutorials/)docs = [ "it is a good
Visual Studio 16 2019 could not find any instance of Visual Studio. 之前做的好好的, 从来没有出过这样的错而且点了编译和配置连接之后, 没有选择用什么编译器生成,就出现这种问题的情况下解决方法:选择file下面的delete cache 之后再编辑就会让你选择用什么VS了注意:安装好visual studio 2017什么的...
BERT-BiLSTM-CRF-NER实体命名识别模型比较 文章目录github开源模型比较github开源模型比较fighting41love/funNLP1. 地址:https://github.com/macanv/BERT-BiLSTM-CRF-NER比较:bert后面的lstm作用不大2. 地址:https://github.com/WenRichard/KBQA-BERT技术路线:命名实体识别步骤,采用BERT+BiLSTM+CRF方法(另外加上一些规则映射,可以提高覆盖度)属性映射步骤(问句:谁写的–>映射为作者),转换成文本相似