排序:
默认
按更新时间
按访问量

Makefile经典教程

转载自: http://blog.csdn.net/ruglcc/article/details/7814546/  http://blog.csdn.net/haoel/article/details/2886 0.1 关于程序的编译和链接:     首先要把源文件编译成中间代码文件,在...

2018-01-16 15:52:58

阅读数:71

评论数:0

py-faster-rcnn 算法详解

一、faster-rcnn 之 RPN网络的结构解析 http://blog.csdn.net/sloanqin/article/details/51545125

2017-09-10 16:08:10

阅读数:136

评论数:0

py-faster-rcnn end2end训练记录

一、train.prototxt解读 1. vgg16网络conv3_1之间的卷积层固定,不参与微调学习。 2. RPN部分不在预训练模型内,卷积层的weigh和bias需要初始化。

2017-09-10 15:52:12

阅读数:260

评论数:0

caffe的python接口封装原理与解析

http://blog.csdn.net/sloanqin/article/details/51564582

2017-09-10 15:04:18

阅读数:122

评论数:0

faster rcnn 源码阅读

1、训练数据是如何准备的:imdb和roidb的产生 http://blog.csdn.net/sloanqin/article/details/51537713#comments

2017-09-10 14:43:45

阅读数:199

评论数:0

神经网络与深度学习 笔记5 过度拟合和正则化

1.过拟合 模型复杂而训练样本不足,过度训练,会导致过度拟合。 训练数据集上的代价表现是越来越好的,测试集上的代价越来越差。训练数据上的分类准确率一直在提升接近 100%,而测试准确率仅仅能够达到 82.27%。 网络几乎是在单纯记忆训练集合,而没有对数字本质进行理解能够泛化到测试数据集上...

2017-07-24 20:25:07

阅读数:1443

评论数:0

神经网络与深度学习 笔记4 交叉熵代价函数 softmax函数

1. 学习缓慢问题 二次代价函数,定义如下 其中 a 是神经元的输出,训练输入为 x = 1,y = 0 则是目标输出。显式地使用权重和偏置来表达这个,我们有 a = σ(z),其中 z = wx + b。使用链式法则来求权重和偏置的偏导数就有: σ 函数图像: ...

2017-07-21 17:34:20

阅读数:433

评论数:0

神经网络与深度学习 笔记3 反向传播算法

1. 使用矩阵快速计算输出的方法 使用 wljk 表示从(l−1)th 层的 kth个神经元到 lth层的 jth 个神经元的链接上的权重. 例如,下图给出了网络中第二层的第四个神经元到第三层的第二个神经元的链接上的权重:         对网络的偏置和激活值也会使用类似的表...

2017-07-21 11:45:45

阅读数:144

评论数:0

神经网络与深度学习 笔记2 梯度下降

1.梯度下降定义一个二次代价函数C:C(w,b)≡12n∑x∥y(x)−a∥2.这里 w 表示所有的网络中权重的集合,b 是所有的偏置,n 是训练输入数据的个数,a 是表示当输入为 x 时输出的向量,求和则是在总的训练输入 x 上进行的。输出 a 取决于 x, w和 b。采用梯度下降的算法来找到能...

2017-07-21 09:41:13

阅读数:388

评论数:0

神经网络与深度学习 笔记1 感知机 S型神经元

1.感知器     一个感知器接受几个二进制输入,x 1 , x 2 , . . .,并产生一个二进制输出:                         示例中的感知器有三个输入,x 1 , x 2 , x 3,引入权重,w 1 , w 2 , . . .,表示相应输入对于输出重要性的...

2017-07-21 09:16:45

阅读数:183

评论数:0

OpenCV3 Python语言实现 笔记6

目标跟踪 一、帧间差异 运动检测 import cv2 import numpy as np camera = cv2.VideoCapture(0) #获取常用的结构元素的形状:矩形(包括线形)、椭圆(包括圆形)及十字形 #MORPH_RECT, MORPH_ELLIPSE, MORPH_...

2017-07-13 14:50:17

阅读数:266

评论数:0

OpenCV3 Python语言实现 笔记5

目标检测 目标识别 HOG:特征描述符 按八个方向计算颜色梯度 一个单元16*16像素 一个块2*2单元 按块构成特征向量 图像金字塔:使用任意尺度缩小图像大小 使用高斯模糊平滑图像 图像比最小尺寸还大则重复操作 滑动窗口:解决定位问题 使用图像金字塔在不同尺度下重复扫描 非最大抑制:解决区...

2017-07-12 20:40:11

阅读数:365

评论数:1

OpenCV3 Python语言实现 笔记4

特征检测 特征提取 特征匹配 关键点检测+描述符 SIFT: DoG + SIFT SURF: Hessian + SURF ORB:  FAST + BRIEF 暴力匹配 FLANN匹配法 一、SIFT Different of Gaussian(DoG) 对同一图像使用不同高斯滤波器 Do...

2017-07-11 21:30:11

阅读数:404

评论数:0

OpenCV3 Python语言实现 笔记3

分割    GrabCut算法   分水岭算法 一、GrabCut import numpy as np import cv2 from matplotlib import pyplot as plt img = cv2.imread('../images/statue_small....

2017-07-10 16:57:28

阅读数:162

评论数:0

OpenCV3 Python语言实现 笔记2

一、滤波 高通滤波器HPF:根据像素与邻近像素的亮度差值来提升该像素的亮度 低通滤波器LPF:在像素与周围像素的亮度差值小于一个特定值时,平滑该像素亮度,去噪和模糊化 import cv2 import numpy as np from scipy import ndimage kerne...

2017-07-10 16:42:08

阅读数:344

评论数:0

OpenCV3 Python语言实现 笔记1

一、 python和numpy表示一幅图像 img = numpy.zeros((3,3), dtype=numpy.uint8) 二、 一个opencv图像是.array类型的二维或三维数组 使用numpy.array访问图像数据 1.单像素操作:获取指定位置(150,120,0)像素: im...

2017-07-09 19:26:09

阅读数:196

评论数:0

机器学习实战 支持向量机

#!/usr/bin/env python # -*- coding: utf-8 -*- from numpy import * '''#######******************************** Non-Kernel VErsions below #######*****...

2017-07-05 21:08:19

阅读数:118

评论数:0

机器学习实战 Logistic回归

#!/usr/bin/env python # -*- coding: utf-8 -*- from numpy import * def loadDataSet(): dataMat = []; labelMat = [] fr = open('testSet.txt') ...

2017-07-03 10:20:35

阅读数:98

评论数:0

机器学习实战 朴素贝叶斯

#!/usr/bin/env python # -*- coding: utf-8 -*- from numpy import * def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'hel...

2017-07-01 17:58:59

阅读数:89

评论数:0

机器学习实战 决策树

#!/usr/bin/env python # -*- coding: utf-8 -*- from math import log import operator def createDataSet(): dataSet = [[1, 1, 'yes'], ...

2017-07-01 17:47:42

阅读数:102

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭