MapState的方法和Java的Map的方法极为相似,所以上手相对容易。
常用的有如下:
- get()方法获取值
- put(),putAll()方法更新值
- remove()删除某个key
- contains()判断是否存在某个key
- isEmpty() 判断是否为空
需求:统计每个用户的行为次数
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.state.MapState;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.util.Collector;
import java.time.Duration;
import java.util.Random;
public class MapStateTest {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setAutoWatermarkInterval(100);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
DataStreamSource<Tuple3<String, String, Long>> tuple2DataStreamSource = env.addSource(new SourceFunction<Tuple3<String, String, Long>>() {
boolean flag = true;
@Override
public void run(SourceContext<Tuple3<String, String, Long>> sourceContext) throws Exception {
String[] s = {"张三", "王五", "李四", "秋英"};
String[] s1 = {"登录", "退出", "加购", "够买"};
while (flag) {
Thread.sleep(1000);
int i = new Random().nextInt(4);
sourceContext.collect(new Tuple3<String, String, Long>(s[i], s1[i], System.currentTimeMillis()));
}
}
@Override
public void cancel() {
flag = false;
}
});
SingleOutputStreamOperator<Tuple3<String, String, Long>> tuple3SingleOutputStreamOperator = tuple2DataStreamSource.assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple3<String, String, Long>>forBoundedOutOfOrderness(Duration.ofSeconds(5))
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, String, Long>>() {
@Override
public long extractTimestamp(Tuple3<String, String, Long> stringLongTuple2, long l) {
return stringLongTuple2.f2;
}
}));
tuple3SingleOutputStreamOperator.keyBy(new KeySelector<Tuple3<String, String, Long>, String>() {
@Override
public String getKey(Tuple3<String, String, Long> stringStringLongTuple3) throws Exception {
return stringStringLongTuple3.f0;
}
}).process(new KeyedProcessFunction<String, Tuple3<String, String, Long>, String>() {
MapState<String,Integer> mapState = null;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
MapStateDescriptor<String,Integer> mapStateDescriptor = new MapStateDescriptor<String, Integer>("mapstate",String.class,Integer.class);
mapState = getRuntimeContext().getMapState(mapStateDescriptor);
}
@Override
public void processElement(Tuple3<String, String, Long> value, Context ctx, Collector<String> out) throws Exception {
// 初始化
if(!mapState.contains(value.f1)){
mapState.put(value.f1,1);
}
// "登录", "退出", "加购", "够买"
mapState.put(value.f1,mapState.get(value.f1) + 1);
out.collect(value.f0 + "[登录次数:" + mapState.get("登录") + ",退出次数:" + mapState.get("退出") + ",加购次数:" + mapState.get("加购") + ",够买次数:" + mapState.get("够买") + "]");
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
super.onTimer(timestamp, ctx, out);
}
}).print();
env.execute("mapState");
}
}
3712

被折叠的 条评论
为什么被折叠?



