ReducingState介绍
- ReducingState是和ReduceFunction配合使用
- get() 获取状态的值
- add(IN value)方法添加一个元素,触发reduceFunction计算一次
需求:输出各设备10s内最大温度
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.common.state.ReducingState;
import org.apache.flink.api.common.state.ReducingStateDescriptor;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.util.Collector;
import java.time.Duration;
import java.util.Random;
public class ReducingStateTest {
public static void main(String[] args) throws Exception {
// 需求:取10秒内最高的温度进行输出
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setAutoWatermarkInterval(100l);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
DataStreamSource<Tuple3<String, Integer, Long>> tuple3DataStreamSource = env.addSource(new SourceFunction<Tuple3<String, Integer, Long>>() {
boolean flag = true;
@Override
public void run(SourceContext<Tuple3<String, Integer, Long>> ctx) throws Exception {
String[] str = {"水阀1", "水阀2", "水阀3"};
while (flag) {
int i = new Random().nextInt(3);
// 温度
int temperature = new Random().nextInt(100);
Thread.sleep(1000l);
// 设备号、温度、事件时间
ctx.collect(new Tuple3<String, Integer, Long>(str[i], temperature, System.currentTimeMillis()));
}
}
@Override
public void cancel() {
flag = false;
}
});
tuple3DataStreamSource.assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple3<String, Integer, Long>>forBoundedOutOfOrderness(Duration.ofSeconds(2))
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, Integer, Long>>() {
@Override
public long extractTimestamp(Tuple3<String, Integer, Long> stringIntegerLongTuple3, long l) {
return stringIntegerLongTuple3.f2;
}
})).keyBy(new KeySelector<Tuple3<String, Integer, Long>, String>() {
@Override
public String getKey(Tuple3<String, Integer, Long> stringIntegerLongTuple3) throws Exception {
return stringIntegerLongTuple3.f0;
}
}).process(new KeyedProcessFunction<String, Tuple3<String, Integer, Long>, String>() {
Long interval = 10 * 1000l;
ReducingState<Integer> reducingState = null;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
ReducingStateDescriptor<Integer> reducingStateDescriptor = new ReducingStateDescriptor<Integer>("reducingState",new Max(),Integer.class);
reducingState = getRuntimeContext().getReducingState(reducingStateDescriptor);
}
@Override
public void processElement(Tuple3<String, Integer, Long> value, Context ctx, Collector<String> out) throws Exception {
// 注册定时器10s触发一次,相同定时器重复注册会忽略
Long statrTimestamp = ctx.timestamp() - (ctx.timestamp() % interval);
Long timerTimestamp = statrTimestamp + interval;
ctx.timerService().registerEventTimeTimer(timerTimestamp);
// 加入新元素
reducingState.add(value.f1);
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
super.onTimer(timestamp, ctx, out);
out.collect("[" + ctx.getCurrentKey() + "] " + "10s内最大温度是" + reducingState.get());
reducingState.clear();
}
}).print();
env.execute("reduceState");
}
private static class Max implements ReduceFunction<Integer> {
@Override
public Integer reduce(Integer integer, Integer t1) throws Exception {
return Math.max(integer,t1);
}
}
}