信用评分模型中的滚动率分析

信用评分模型利用滚动率分析判断客户风险等级,通过观察客户在特定时间点前后的逾期行为变化,确定其风险程度。例如,逾期3期以上通常被视为高风险。滚动率分析有助于银行设定坏客户的阈值,制定更精准的风险管理策略。

信用评分模型中的滚动率分析

信用风险模型的目标是识别出应被拒之门外的潜在坏客户,因此给出合理的客户好坏分类是建模的基础。比如,信用卡逾期的“坏客户”,究竟应该是所有逾期过的客户,还是逾了好几期的客户呢?前者是不是还能抢救一下,后者是不是风险太高?

本期就来讲讲如何用科学的方法,判断你的客户还能不能抢救一下。

信用风险模型,简单地说就是通过历史数据,抓取坏客户显著区别于正常客户的特征,并以此为标准去预测未来会有很大概率出现这种行为的人。所以在模型中“坏”的定义就显得尤为重要,也就是未来究竟想把哪些人拒之门外。我们曾经介绍过vintage分析(参见:《vintage分析,从酿酒到银行信用评分领域》),该方法主要用来判断客户展现好坏本性的时间因素,但是在判断客户的好坏程度方面,则需要引入另一种方法:滚动率分析。

在信用评分领域,一般用客户拖欠欠款的时间来刻画客户的行为,逾期时间越长,逾期等级越高,客户风险也就越高。但是由于收益与风险的正比关系,银行为了找到平衡,不会认为所有发生过逾期的客户都是坏客户,并且“适当”的逾期不仅不会带来损失,反而带来了可观的逾期利息收入,所以对于银行来说,他所关注的坏客户是坏到某一程度,也就是逾期等级较高且不还款的客户。

信用风险模型中的滚动率分析,简单地说就是以某一时间点为观察节点,观察客户在该点前一段时间内(比如一年)最坏逾期程度,并追踪其在观察点之后的一段时间向其他逾期程度发展的情况,特别是向更坏程度发展的情况。

听起来有点懵?那我们来举个栗子。

假设我们取2016年8月31日为观察点,向前推一年为观察期,向后推一年为表现期,分别观察X万客户。

对于某一位客户逾期记录如下:
在这里插入图片描述
首先我们解释一下表中逾期期数的意思,假设一个客户在本月还款日的时候没有及时还上钱,那么

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值