可解释
rrr2
这个作者很懒,什么都没留下…
展开
-
【可解释】|弱监督定位
https://github.com/jbeomlee93/AdvCAMhttps://github.com/zhaozhengChen/ReCAMhttps://github.com/shaofeifei11/CI-CAMhttps://github.com/CVI-SZU/CCAMhttps://github.com/weixuansun/infercamhttps://github.com/shjo-april/PuzzleCAM原创 2022-12-01 13:27:33 · 1069 阅读 · 0 评论 -
【可解释】|深层网络的公理化属性(Axiomatic Attribution for Deep Networks)
Axiomatic Attribution for Deep Networks, ICML 2017研究了将深层网络的预测归因于其输入特征的问题, 简单的说就是通过研究输入与输出的关系,去理解模型的输入-输出行为。并定义归因应该满足的2个基本公理,敏感性和实现不变性作者发现其他关于特征归因方法的文献中,对于2条公理,至少有一条是不满足的。这些文献包括DeepLift (Shrikumar et al., 2016; 2017), Layer-wise relevance propagation (原创 2022-05-25 08:29:52 · 470 阅读 · 0 评论 -
【可解释】| Guided Backprop deconv 方法理论分析
A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations反向传播的可视化技术被用来理解和可视化卷积神经网络(CNN)的学习范式,但对于引导反向传播(GBP)和反卷积网络(DeconvNet)过程,现阶段缺少相应的理论来进行解释。因此,作者从理论层面探讨了GBP和DeconvNet在神经网络中的作用。研究表明:GBP和DeconvNet在训练过程中的作用是不断的进行部分图像重建,而与原创 2022-05-17 17:03:42 · 397 阅读 · 0 评论 -
【可解释】|指标
2021CVPRRevisiting The Evaluation of Class Activation Mapping for Explainability:https://arxiv.org/abs/2104.10252https://github.com/aimagelab/ADCC原创 2022-05-17 13:16:54 · 118 阅读 · 0 评论 -
【可解释】|Relevance-CAM LFI-CAM
(ICASSP) INTEGRATED GRAD-CAM: SENSITIVITY-AWARE VISUAL EXPLANATION OF DEEP CONVOLUTIONAL NETWORKS VIA INTEGRATED GRADIENT-BASED SCORING(WACV2021) F-CAM: Full Resolution Class Activation Maps via Guided Parametric Upscaling(CVPR2021) Relevance-CAM: Your M原创 2022-05-02 09:12:21 · 564 阅读 · 0 评论 -
【可解释】|ISCAM
IS-CAM: Integrated Score-CAM foraxiomatic-based explanations原创 2022-05-02 09:06:18 · 338 阅读 · 0 评论 -
深度学习可解释性
https://github.com/oneTaken/awesome_deep_learning_interpretability原创 2021-04-01 17:22:11 · 172 阅读 · 0 评论 -
【可视化】Group-CAM
refhttps://mp.weixin.qq.com/s/kBlTAbNoyfiJeEEhexA4-A原创 2021-07-01 16:12:08 · 276 阅读 · 0 评论 -
【CNN可解释性】|score cam
论文:Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks作者:Haofan Wang1, Zifan Wang1, Mengnan Du2, Fan Yang2,Zijian Zhang3, Sirui Ding3, Piotr Mardziel1, Xia Hu代码:https://github.com/haofanwang/Score-CAM收录于CVPR20201.视觉可解释性神经网原创 2021-12-11 11:21:24 · 3677 阅读 · 0 评论 -
【可解释】|Group-CAM
论文链接:https://arxiv.org/abs/2103.13859https://github.com/wofmanaf/Group-CAM原创 2022-03-21 10:37:15 · 5124 阅读 · 0 评论 -
【可解释】|Keep CALM and Improve Visual Feature Attribution(ICCV2021)
本文提出了一种新颖的视觉特征归因方法:类激活潜在映射(CALM)。基于最后一层 CNN 的概率处理,CALM在设计上是可解释的类激活映射(CAM,class activation mapping)一直是多视觉任务特征归因方法的基石。它的简单性和有效性导致了在解释视觉预测和弱监督定位任务方面的广泛应用。但是,CAM 有其自身的缺点。归因图的计算依赖于不属于训练计算图的临时校准步骤,这使我们难以理解归因值的真正含义。在本文中,我们通过在公式中显式地结合编码线索位置的潜在变量来改进 CAM,从而将归因图包含到原创 2022-03-20 11:09:17 · 175 阅读 · 0 评论 -
【可解释】|Layer CAM
发现问题Grad CAM浅层特征图的显著图噪声过多。分析:浅层权重方差变化大,不能使用梯度均值为特征图每个像素赋予同等重要度提出解决方法LayerCAM:基于元素的,每一张特征图中每一个元素都有一个对应的权重。实验验证1 弱监督目标定位实验ILSVRC 50000张验证集定位精度由loc1和loc5指标衡量。如果估计边界框和地面真值边界框之间的联合交集(IoU)大于或等于0.5,同时前1个预测类是正确的,则loc1度量表示估计结果属于正确类别。loc5指标用于预测的前5个类别。原创 2022-03-19 10:41:21 · 2082 阅读 · 0 评论 -
【CNN可解释性】|特征可视化技术——CAM LIME Grad-CAM 2021-2022
反卷积 导向反向传播使用普通的反向传播得到的图像噪声较多,基本看不出模型的学到了什么东西。使用反卷积可以大概看清楚猫和狗的轮廓,但是有大量噪声在物体以外的位置上。导向反向传播基本上没有噪声,特征很明显的集中猫和狗的身体部位上。缺点:虽然借助反卷积和导向反向传播我们“看到”了CNN模型神秘的内部,但是却并不能拿来解释分类的结果,因为它们对类别并不敏感,直接把所有能提取的特征都展示出来了。refhttps://mp.weixin.qq.com/s/4Tq43DEaUk_rtLubcztyNw类激.原创 2021-10-26 10:34:14 · 4831 阅读 · 2 评论 -
【CNN解释】|Score CAM
https://github.com/haofanwang/Score-CAMScore-CAM:Score-Weighted Visual Explanations for Convolutional Neural Networkshttps://www.cnblogs.com/wanghui-garcia/p/14116215.htmlAbstract近年来,卷积神经网络的内部机制以及网络做出特定决策的原因越来越受到人们的关注。在本文中,我们开发了一种新的基于类激活映射的post-hoc视觉解释原创 2021-10-26 09:47:07 · 3590 阅读 · 0 评论
分享