(笔记整合)分治算法

一、如何理解分治算法?

分治算法(divide and conquer)的核心思想其实就是四个字,分而治之,也就是将原问题划分成n个规模较小,并且结构与原问题相似的子问题,递归地解决这些子问题,然后再合并其结果,就得到原问题的解。

这个定义看起来有点类似递归的定义。关于分治和递归的区别,在排序(下)的时候讲过,分治算法是一种处理问题的思想,递归是一种编程技巧。实际上,分治算法一般都比较适合用递归来实现。分治算法的递归实现中,每一层递归都会涉及这样三个操作:

  • 分解:将原问题分解成一系列子问题;
  • 解决:递归地求解各个子问题,若子问题足够小,则直接求解;
  • 合并:将子问题的结果合并成原问题。

分治算法能解决的问题,一般需要满足下面这几个条件:

  • 原问题与分解成的小问题具有相同的模式;
  • 原问题分解成的子问题可以独立求解,子问题之间没有相关性,这一点是分治算法跟动态规划的明显区别,等我们讲到动态规划的时候,会详细对比这两种算法;
  • 具有分解终止条件,也就是说,当问题足够小时,可以直接求解;
  • 可以将子问题合并成原问题,而这个合并操作的复杂度不能太高,否则就起不到减小算法总体复杂度的效果了。

二、分治算法应用举例分析

假设有n个数据,期望数据从小到大排列,那完全有序的数据的有序度就是n(n-1)/2,逆序度等于0;相反,倒序排列的数据的有序度就是0,逆序度是n(n-1)/2。除了这两种极端情况外,通过计算有序对或者逆序对的个数,来表示数据的有序度或逆序度。

在这里插入图片描述
最笨的方法是,拿每个数字跟它后面的数字比较,看有几个比它小的。把比它小的数字个数记作k,通过这样的方式,把每个数字都考察一遍之后,然后对每个数字对应的k值求和,最后得到的总和就是逆序对个数。不过,这样操作的时间复杂度是O(n^2)。那有没有更加高效的处理方法呢?
用分治算法来试试。套用分治的思想来求数组A的逆序对个数。我们可以将数组分成前后两半A1和A2,分别计算A1和A2的逆序对个数K1和K2,然后再计算A1与A2之间的逆序对个数K3。那数组A的逆序对个数就等于K1+K2+K3。

使用分治算法其中一个要求是,子问题合并的代价不能太大,否则就起不了降低时间复杂度的效果了。那回到这个问题,如何快速计算出两个子问题A1与A2之间的逆序对个数呢?
这里就要借助归并排序算法了。归并排序中有一个非常关键的操作,就是将两个有序的小数组,合并成一个有序的数组。实际上,在这个合并的过程中,我们就可以计算这两个小数组的逆序对个数了。每次合并操作,我们都计算逆序对个数,把这些计算出来的逆序对个数求和,就是这个数组的逆序对个数了。
在这里插入图片描述

public class MergeTest {
    private int num = 0; // 全局变量或者成员变量

    public int count(int[] a) {
        num = 0;
        mergeSortCounting(a, 0, a.length - 1);
        return num;
    }

    private void mergeSortCounting(int[] a, int p, int r) {
        if (p >= r) { return; }
        int q = (p + r) / 2;
        mergeSortCounting(a, p, q);
        mergeSortCounting(a, q + 1, r);
        merge(a, p, q, r);
    }

    private void merge(int[] a, int p, int q, int r) {
        int i = p, j = q + 1, k = 0;
        int[] tmp = new int[r - p + 1];
        while (i <= q && j <= r) {
            if (a[i] <= a[j]) {
                tmp[k++] = a[i++];
            } else {
                num += (q - i + 1); // 统计p-q之间,比a[j]大的元素个数
                tmp[k++] = a[j++];
            }
        }
        while (i <= q) { // 处理剩下的
            tmp[k++] = a[i++];
        }
        while (j <= r) { // 处理剩下的
            tmp[k++] = a[j++];
        }
        for (i = 0; i <= r - p; ++i) { // 从tmp拷贝回a
            a[p + i] = tmp[i];
        }
    }

    public static void main(String[] args) {
        System.out.println(new MergeTest().count(new int[] {2, 4, 3, 1, 5, 6}));
    }
}

三、分治思想在海量数据处理中的应用

分治算法思想的应用是非常广泛的,并不仅限于指导编程和算法设计。它还经常用在海量数据处理的场景中。前面的数据结构和算法,大部分都是基于内存存储和单机处理。但是,如果要处理的数据量非常大,没法一次性放到内存中,这个时候,这些数据结构和算法就无法工作了。

比如,给10GB的订单文件按照金额排序这样一个需求,看似是一个简单的排序问题,但是因为数据量大,有10GB,而机器的内存可能只有2、3GB这样子,无法一次性加载到内存,也就无法通过单纯地使用快排、归并等基础算法来解决了。

要解决这种数据量大到内存装不下的问题,就可以利用分治的思想。可以将海量的数据集合根据某种方法,划分为几个小的数据集合,每个小的数据集合单独加载到内存来解决,然后再将小数据集合合并成大数据集合。实际上,利用这种分治的处理思路,不仅仅能克服内存的限制,还能利用多线程或者多机处理,加快处理的速度。

比如刚刚举的那个例子,给10GB的订单排序,就可以先扫描一遍订单,根据订单的金额,将10GB的文件划分为几个金额区间。比如订单金额为1到100元的放到一个小文件,101到200之间的放到另一个文件,以此类推。这样每个小文件都可以单独加载到内存排序,最后将这些有序的小文件合并,就是最终有序的10GB订单数据了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值