机器视觉笔记5——前向传播函数 前向传播(Forward Propagation)官方来说,是神经网络中的一种计算过程,用于将输入数据经过各层网络的权重和激活函数进行计算,最终得到网络的输出结果。在训练过程中,前向传播是从输入数据开始,通过网络的各层逐步计算到输出结果的过程。
机器视觉笔记3——卷积残差及代码实现 YOLOv3的改进,是在YOLOv1、v2基础上引入了残差连接(Residual Connections)作为其主干网络即backboneDarknet-53(53层的深度卷积神经网络,包含多个残差模块)。
机器视觉笔记2——交并比IoU及代码实现 在目标检测领域,交并比(IoU,全称Intersection of Union)是目标检测和和分割任务中一个重要的衡量标准,根据名字很容易知道IoU即为两个边界框(或者是两个分割掩模)的交集区域的面积和两个边界框(或者是两个分割掩模)的并集区域的面积之比。
在google colab上搭建pytorch深度学习环境 Google Colab是一种在线的开发环境,它基于Jupyter Notebook,可以在浏览器中运行Python代码。Colab提供了一个具有CPU和GPU支持的云端运行环境,用户可以免费使用。
远程服务器配置深度学习环境 随着AI技术越来越火,一个机械结构的也开始卷入深度学习机器视觉。由于对YOLO(You Only Look Once)比较感兴趣,参考了B站)教程搭建Yolov3基于VOC2007+12数据集的深度学习模型。由于本子太慢了,借助远程服务器进行训练。