python lib version absl-py 1.4.0addict 2.4.0ansi2html 1.8.0anyio 3.7.0argon2-cffi 21.3.0argon2-cffi-bindings 21.2.0arrow 1.2.3asttokens 2.2.1attrs
bert 笔记 一、embedding1、pytorch——embedding函数生成的embedding2、pos embedding【1,2,3,4,。。。。。32】 这个列表生成的embedding3、type embedding 有两句话时来区分的。 最终是1+2+3三个向量相加得最终embedding二、mul-head q、k、v,生成bert-embedding,一共12个head1、q k两两结合,使用softmax生成注意力权重,然后和v结合生成b,b为最终值2、self attention完成后
人工智能顶会 下面这些是比价出名的顶会CVPR:IEEE国际计算机视觉与模式识别会议ECCV:欧洲计算机视觉国际会议ICCV:国际计算机视觉大会AAAI:国际先进人工智能协会NIPS:神经信息处理系统大会ICLR:国际学习表征会议ICML:国际机器学习会议...
高斯模糊需要知道的理念 让图像看起来模糊,可以用局部像素均值的方法,如果使用简单平均,显然不是很合理,因为图像都是连续的,越靠近的点关系越密切,越远离的点关系越疏远。因此,加权平均更合理,距离越近的点权重越大,距离越远的点权重越小。。。。。。...
pytorch BatchNorm2d 函数 此函数主要是为了归一化,本文主要讲解如何计算的,原理可以搜索其他博文。上代码:# -*-coding:utf-8-*-import randomimport numpy as npimport torchtorch.manual_seed(50)random.seed(50)batch = torch.nn.BatchNorm2d(1,momentum = 0, eps=0,affine =False, track_running_stats=False)data =torch.
使用opencv 识别圆圈 import cv2 as cvimport numpy as np#读取文件img = 'C:/Users/DELL/Desktop/pic2/1.png'planets = cv.imread(img)#转成灰度图片gray = cv2.cvtColor(planets, cv2.COLOR_RGB2GRAY)#sobel边缘检测sobel_x = cv2.Sobel(gray, cv2.CV_8U, 1, 0)#霍夫圆检测circles = cv.HoughCircles.