Kibana日志整形
Elastic Stack 前身:ELK 生态
Elastic Stack 生态是 Elastic 公司最近两三年提出的架构,如果你对 Elastic Stack 陌生,那我们先聊聊它的前身 ELK 生态。
ELK 是 Elastic 公司的三个开源项目的缩写,这三个项目分别如下。
Elasticsearch:基于 Apache Lucene 搜索引擎,使用 RESTful 接口屏蔽了搜索架构的复杂性。
Logstash:服务器数据处理管道。
Kibana:Elasticsearch 搜索引擎的可视化平台。
当应用服务的日志通过 Logstash 进行结构化处理,进入 Elasticsearch 搜索引擎后,海量的日志就具备了在 Kibana 平台上的集中式实时分析的能力。
以上三者便让 Elastic Stack 成为目前最流行,也最具代表性的日志分析架构。在了解 Elastic Stack 之前,我们需要先了解下日志分析架构的演进过程。
日志分析框架的演进
学习过往,助于引发我们对当下日志分析架构的思考:理解为什么 Elastic Stack 生态是最优解?Elastic Stack 生态又到底解决了什么痛点?
日志分析架构大致有以下三个阶段。
1.“原始”时期
时间拨回 2000 年初,互联网刚刚兴起,整体的应用服务架构还未进入微服务时代,应用服务大多都是单体的,所以应用服务的日志天生就是集中在那台单体机器上打印的日志。
由于互联网企业都着眼在拓展业务

本文介绍了Elastic Stack(前身为ELK生态)中的Kibana日志分析,讲述了日志分析架构的演进,强调了日志结构化的重要性,并详细阐述了如何在Kibana中创建索引模式、探索日志以及制作可视化视图,以提升日志分析的效率和效果。
最低0.47元/天 解锁文章
1323

被折叠的 条评论
为什么被折叠?



