最大子序列的和(四种算法)

三重循环
public static int maxSubSum(int[] a) {
        int maxSum = 0;
        for (int i = 0; i < a.length; i++)
            for (int j = i; j < a.length; j++) {
                int thisSum = 0;
                for (int k = i; k <= j; k++)
                    thisSum += a[k];
                if (thisSum > maxSum)
                    maxSum = thisSum;
            }
        return maxSum;
    }
二重循环
public static int maxSubSum(int[] a) {
        int maxSum = 0;
        for (int i = 0; i < a.length; i++) {
            int thisSum = 0;
            for (int j = i; j < a.length; j++) {
                thisSum += a[j];
                if (thisSum > maxSum)
                    maxSum = thisSum;
            }
        }
        return maxSum;
    }
递归
private static int maxSumRec(int[] a, int left, int right) {
        if (left == right)
            if (a[left] > 0)
                return a[left];
            else
                return 0;
        int center = (left + right) / 2;
        int maxLeftSum = maxSumRec(a, left, center);
        int maxRightSum = maxSumRec(a, center+1, right);

        int maxLeftBorderSum = 0, leftBorderSum = 0;
        for (int i = center; i >= left; i--) {
            leftBorderSum += a[i];
            if (leftBorderSum > maxLeftBorderSum)
                maxLeftBorderSum = leftBorderSum;
        }

        int maxRightBorderSum = 0, rightBorderSum = 0;
        for (int i = center + 1; i <= right; i++) {
            rightBorderSum += a[i];
            if (rightBorderSum > maxRightBorderSum)
                maxRightBorderSum = rightBorderSum;
        }

        return max(maxLeftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum);

    }
    public static int maxSubSum(int[] a) {
        return maxSumRec(a, 0, a.length - 1);
    }
    public static int max (int maxLeftSum, int maxRightSum, int sum) {
        if (maxLeftSum > maxRightSum)
            if (maxLeftSum > sum)
                return maxLeftSum;
            else
                return sum;
        else
            if (maxRightSum > sum)
                return maxRightSum;
            else
                return sum;
    }
消去负数
public static int maxSubSum(int[] a) {
        int maxSum = 0, thisSum = 0;
        for (int j = 0; j < a.length; j++) {
            thisSum += a[j];
            if (thisSum > maxSum)
                maxSum = thisSum;
            else if (thisSum < 0)
                thisSum = 0;
        }
        return maxSum;
    }
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值