算法介绍
如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。
下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
Tarjan算法是用来求有向图的强连通分量的。求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法。
Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。
当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。
接下来是对算法流程的演示。
从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],
找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。
返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。
返回节点3,继续搜索到节点4,把4加入堆栈。发现存在一条 节点4 指向 节点1 的有向边,
节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。
继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。
返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。
至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。
可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。
下面给出伪代码::
tarjan(u){
DFN[u]=Low[u]=++Index //为节点u设定次序编号和Low初值
Stack.push(u) //将节点u压入栈中
foreach(u,v) in E //枚举每一条边
if(v is not visted) //如果节点v未被访问过
tarjan(v) //继续向下找
Low[u]=min(Low[u],Low[v])
else if(v in S) //如果节点v还在栈内
Low[u]=min(Low[u],DFN[v])
if(DFN[u]==Low[u]) //如果节点u是强连通分量的根
repeat
v=S.pop//将v退栈,为该强连通分量中一个顶点
print v
until(u==v)
}
注意一个问题就是 对于一整张图 只调用一次Tarjan很可能没有会让整个图没有遍历完。所以应在循环中调用Tarjan 也就是对于每个没有访问过的点 都调用Tarjan,这样以保证整张图都被遍历。