Tarjan 算法 浅谈

算法介绍

如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

Tarjan算法是用来求有向图的强连通分量的。求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法。

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6]

找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量

返回节点3,继续搜索到节点4,把4加入堆栈。发现存在一条 节点4 指向 节点1 的有向边,

节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。

返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

 

下面给出伪代码::

tarjan(u){
    DFN[u]=Low[u]=++Index   //为节点u设定次序编号和Low初值
    Stack.push(u)           //将节点u压入栈中
 
    foreach(u,v) in E       //枚举每一条边
    if(v is not visted) //如果节点v未被访问过
        tarjan(v)       //继续向下找
        Low[u]=min(Low[u],Low[v])
    else if(v in S)     //如果节点v还在栈内
        Low[u]=min(Low[u],DFN[v])
    if(DFN[u]==Low[u])  //如果节点u是强连通分量的根
    repeat
        v=S.pop//将v退栈,为该强连通分量中一个顶点
        print v
    until(u==v)
}

注意一个问题就是 对于一整张图 只调用一次Tarjan很可能没有会让整个图没有遍历完。所以应在循环中调用Tarjan  也就是对于每个没有访问过的点 都调用Tarjan,这样以保证整张图都被遍历。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七情六欲·

学生党不容易~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值