ScanNetV2 数据集讲解和选择性下载

本文详细介绍了ScanNetV2数据集,包括数据集的结构、大小和用途,提供了一种选择性下载的方法,节省存储空间。通过作者提供的Python下载脚本,用户可以定制下载所需文件类型,如_vh_clean_2.ply。同时,文章还解决了数据集分割问题,包括训练集、验证集和测试集的划分,以及如何按需整理文件结构,以适应不同3D点云开发需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面的话: 

不可转载!!!!!!!!!!!!

ScanNetV2一共1.2T,数据太大本文会简单讲解如何下载自己想要的文件,并附上修改后的下载程序

ScanNetV2:http://www.scan-net.org/

简介

ScanNetV2的作者是斯坦福大学的博士,其团队通过收集RGB-D的视频序列,通过ipad应用加深传感器而收集的,然后视频会被上传到服务器,并被自动重建。然后,视频会被给到亚马逊 Mechanical Turk,将标注工作众包出去。ScanNetV2是RGB-D数据集,在1500多次扫描中包含250万个视图,并标注了3D相机姿势,表面重建和实例级语义分割。其包括:1201个训练集,312个验证集,以及100个测试集。

ScanNetv2数据集是一个广泛应用于计算机视觉领域的室内场景 understanding 研究的数据集。它由斯坦福大学普林斯顿大学的研究团队合作创建,并于2018年发布。 ScanNetv2数据集包含了超过1500个室内场景的深度图像RGB图像。这些场景的数据是通过扫描真实世界中已有的室内空间获得的。其中还包括相应的物体标注实例分割,提供了场景中物体的类别标签像素级别的分割掩码。此外,数据集还提供了场景的3D重建结果,可以帮助研究人员进行三维场景理解的相关任务。 ScanNetv2数据集的特点是它的场景覆盖面广泛且多样化。数据集中包含了办公室、家庭住宅、餐厅、商店等各种室内场景。这样的多样性有助于研究人员在各种实际应用中进行场景理解的研究,比如室内导航、增强现实、室内家具布局等。 借助ScanNetv2数据集,研究人员可以开展多个任务领域的研究,如场景语义分割、对象检测、物体跟踪场景重建等。另外,数据集的开放性还促进了算法的发展比较,使得研究人员可以对不同方法进行性能评估,并推动该领域的进步。 总的来说,ScanNetv2数据集是一个全面且多样化的室内场景 understanding 数据集,为计算机视觉研究人员提供了开展相关任务的丰富数据资源。它的发布促进了室内场景理解领域的研究算法发展。
评论 100
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MacalDan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值