题目:
题意:
给出一个长度为 n n n的序列 a a a,问由 a a a所有区间的中位数构成的新序列 b b b的中位数会是多少
分析:
忘是哪题了,现在看到中位数就有种想往二分答案上面靠的感
j
i
o
jio
jio
问题在于我们如何判定当前二分到的数在
b
b
b中的排名
我们考虑求出有多少个中位数能排在二分出的
m
i
d
mid
mid前边或者等于
m
i
d
mid
mid,手玩柿子,可以找到满足这个条件的原区间
(
l
,
r
)
(l,r)
(l,r)一定会满足一个东东
首先设
p
i
p_i
pi表示
[
1
,
i
]
[1,i]
[1,i]中
>
m
i
d
>mid
>mid的数有多少
于是有
r
−
(
l
−
1
)
2
>
p
r
−
p
l
−
1
\frac{r-(l-1)}{2}>p_r-p_{l-1}
2r−(l−1)>pr−pl−1
再有
r
−
p
r
∗
2
>
(
l
−
1
)
−
p
l
−
1
∗
2
r-p_r*2>(l-1)-p_{l-1}*2
r−pr∗2>(l−1)−pl−1∗2
那么这个玩意就很想逆序对了,我们用树状数组维护下会非常舒服
总复杂度是
O
(
l
o
g
a
m
a
x
∗
n
l
o
g
n
)
O(log\ a_{max}*nlog\ n)
O(log amax∗nlog n)
代码:
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define LL long long
#define lowbit(x) (x&(-x))
using namespace std;
inline LL read()
{
LL s=0,f=1; char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9') {s=s*10+c-'0';c=getchar();}
return s*f;
}
LL n=read(),l=2147483647,r=-2147483647;
LL a[100005],b[100005];
LL t[400005];
void add(LL x) {for(LL i=x;i<=4*n;i+=lowbit(i)) t[i]++;}
LL query(LL x) {LL s=0;for(LL i=x;i;i-=lowbit(i)) s+=t[i];return s;}
LL check(LL x)
{
memset(t,0,sizeof(t));
for(LL i=1;i<=n;i++) b[i]=b[i-1]+(a[i]>x);
LL s=0;
for(LL i=1;i<=n;i++)
{
add(i-b[i]*2+2*n);
s+=query(i-b[i]*2-1+2*n);
}
return s>=(n*(n+1)/4);
}
int main()
{
for(LL i=1;i<=n;i++) a[i]=read(),l=min(l,a[i]),r=max(r,a[i]);
LL ans;
while(l<=r)
{
LL mid=(l+r)>>1;
if(check(mid)) r=mid-1,ans=mid;
else l=mid+1;
}
cout<<ans;
return 0;
}


被折叠的 条评论
为什么被折叠?



