首先,我们设 q q q为等比, S S S为前 x x x个的和(即 a n s ans ans), a a a为第 x x x的数值
然后,证明开始:
先说下,各位
d
a
l
a
o
dalao
dalao可以边看证明过程,一遍看下文的原理,这样比较好理解~
(
1
)
.
S
n
=
a
1
+
a
2
+
a
3
+
.
.
.
a
n
(1).S_n=a_1+a_2+a_3+...a_n
(1).Sn=a1+a2+a3+...an
(
2
)
.
q
∗
S
n
=
q
∗
a
1
+
q
∗
a
2
+
q
∗
a
3
+
.
.
.
q
∗
a
n
(2).q*S_n=q*a_1+q*a_2+q*a_3+...q*a_n
(2).q∗Sn=q∗a1+q∗a2+q∗a3+...q∗an
(
3
)
.
S
n
−
q
∗
S
n
=
(
自
己
代
进
去
.
.
)
=
a
1
−
q
∗
a
n
=
a
1
−
a
n
+
1
(3).S_n-q*S_n=(自己代进去..)=a_1-q*a_n=a_1-a_{n+1}
(3).Sn−q∗Sn=(自己代进去..)=a1−q∗an=a1−an+1
(
4
)
.
S
n
−
q
∗
S
n
=
(
1
−
q
)
∗
S
n
(4).S_n-q*S_n=(1-q)*S_n
(4).Sn−q∗Sn=(1−q)∗Sn
(
5
)
.
a
1
−
a
n
+
1
=
a
1
−
a
1
∗
q
n
=
(
1
−
q
n
)
∗
a
1
(5).a_1-a_{n+1}=a_1-a_1*q^n=(1-q^n)*a_1
(5).a1−an+1=a1−a1∗qn=(1−qn)∗a1
(
6
)
.
S
n
−
q
∗
S
n
=
a
1
−
a
n
+
1
→
(
1
−
q
)
∗
S
n
=
(
1
−
q
n
)
∗
a
1
(6).S_n-q*S_n=a_1-a_{n+1}→(1-q)*S_n=(1-q^n)*a_1
(6).Sn−q∗Sn=a1−an+1→(1−q)∗Sn=(1−qn)∗a1
最后,我们可以得到公式:
S
n
=
(
1
−
q
n
)
∗
a
1
/
(
1
−
q
)
S_n=(1-q^n)*a_1/(1-q)
Sn=(1−qn)∗a1/(1−q)
证毕
证明过程的原理:
(
1
)
.
(1).
(1).这个
.
.
..
..只要不是从启智幼儿园出来的都应该没问题吧
(
2
)
.
(2).
(2).也很显而易见吧,普通的单项式*多项式
(
3
)
.
(3).
(3).因为是等比数列,所以
a
i
∗
q
=
a
i
+
1
a_i*q=a_{i+1}
ai∗q=ai+1,然后把两个式子中互为相反数的数抵消,就可以得到
a
1
−
a
n
+
1
a_1-a_{n+1}
a1−an+1
(
4
)
.
(4).
(4).小学的乘法分配律,没毛病吧
(
5
)
.
(5).
(5).这个嘛,基本和
(
4
)
(4)
(4)一样,但我们需要先知道一个关于等比数列的东东(
n
o
w
now
now为当前我们要求的是第几位):
a
n
o
w
=
a
1
∗
(
n
o
w
−
1
)
a_{now}=a_1*(now-1)
anow=a1∗(now−1)。有了这个知识的铺垫,就很容易理解了
(
6
)
.
(6).
(6).各位把
(
4
)
(4)
(4)、
(
5
)
(5)
(5)证明出来的结果代进去就好了
本蒟蒻很少写数论,各位 d a l a o dalao dalao看懂了就给个赞吧(•‾⌣‾•)
251

被折叠的 条评论
为什么被折叠?



