数学的回忆(三)——积分和微分

1.定积分

   f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上有定义且有界,作下面4步:(1)分割:用 n − 1 n-1 n1个点分割区间 [ a , b ] [a,b] [a,b],则可以得到: a = x 0 < x 1 < x 2 < ⋯ < x i − 1 < x i < ⋯ < x n = b a=x_{0}<x_{1}<x_{2}<\dots<x_{i-1}<x_{i}<\dots<x_{n}=b a=x0<x1<x2<<xi1<xi<<xn=b。(2)作乘积: f ( ε i ) △ x i f(\varepsilon_{i}) \triangle x_{i} f(εi)xi,其中$x_{i-1}\leqslant \varepsilon_{i}\leqslant x_{i} , , ,\triangle x_{i} =x_{i}-x_{i-1} ; ( 3 ) 求 和 : ;(3)求和: ;(3)\sum_{i=0}^{n} =f(\varepsilon_{i})\triangle x_{i} ; ( 4 ) 取 极 限 : ;(4)取极限: ;(4)\lim_{\lambda\to 0}\sum_{i=0}^{n} =f(\varepsilon_{i})\triangle x_{i} , 其 中 ,其中 ,\lambda=max_{1\leqslant i \leqslant n}|\triangle x_{i}|$。

  如果上述极限存在(与分法无关,与 ε i ) \varepsilon_{i}) εi)的取法无关),则称 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积,并称上述为 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的定积分,记为:
lim ⁡ λ → 0 ∑ i = 0 n = f ( ε i ) △ x i = ∫ a b f ( x ) d x \lim_{\lambda\to 0}\sum_{i=0}^{n} =f(\varepsilon_{i})\triangle x_{i} = \int_{a}^bf(x)dx λ0limi=0n=f(εi)xi=abf(x)dx

2.微分与差分

  设 y = f ( x ) y=f(x) y=f(x) x = x 0 x=x_{0} x=x0的某邻域 U ( x 0 ) U(x_{0}) U(x0)内有定义,并设 x 0 + △ x ∈ U ( x 0 ) x_{0}+\triangle x\in U(x_{0}) x0+xU(x0)。如果 △ y = f ( x 0 + △ x ) − f ( x 0 ) = A △ x + o ( △ x ) \triangle y=f(x_{0}+\triangle x)-f(x_{0})=A\triangle x+o(\triangle x) y=f(x0+x)f(x0)=Ax+o(x),其中 A A A △ x \triangle x x无关, lim ⁡ △ x → 0 o ( △ x ) △ x = 0 \lim_{\triangle x \to 0 }\frac{o(\triangle x)}{\triangle x}=0 limx0xo(x)=0,则称 f ( x ) f(x) f(x)在点 x = x 0 x=x_{0} x=x0处的微分,记为 d y = A △ x dy=A \triangle x dy=Ax,又因自变量的增量 △ x \triangle x x等于自变量的微分 d x dx dx,于是 d y dy dy又可以写成 d y = A d x dy=Adx dy=Adx
  设 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0处可导(可微),则 △ y = d y + o ( △ x ) \triangle y=dy+o(\triangle x) y=dy+o(x),或写成 △ y = f ′ ( x 0 ) △ x + o ( △ x ) \triangle y =f'(x_{0})\triangle x+o(\triangle x) y=f(x0)x+o(x)。若又设在含有 x 0 x_{0} x0的某区间内存在二阶导数,则由拉格朗日余项泰勒公式,有:
f ( x 0 + △ x ) = f ( x 0 ) + f ′ ( x 0 ) △ x + 1 2 ! f ′ ′ ( x 0 ) △ x 2 + R n x f(x_{0}+\triangle x)= f(x_0)+f'(x_0)\triangle x+\frac{1}{2!}f''(x_0) \triangle x^2+R_{n}x f(x0+x)=f(x0)+f(x0)x+2!1f(x0)x2+Rnx
  可推导出下式:
f ( x 0 + △ x ) − f ( x 0 ) = f ′ ( x 0 ) △ x + 1 2 ! f ′ ′ ( x 0 ) △ x 2 + R n x f(x_{0}+\triangle x)-f(x_0)=f'(x_0)\triangle x+\frac{1}{2!}f''(x_0) \triangle x^2+R_{n}x f(x0+x)f(x0)=f(x0)x+2!1f(x0)x2+Rnx
  因此可以得到: o ( △ x ) = 1 2 ! f ′ ′ ( x 0 ) △ x 2 = △ y − d y o(\triangle x)=\frac{1}{2!}f''(x_0) \triangle x^2=\triangle y-dy o(x)=2!1f(x0)x2=ydy

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值