【机器学习百问】1.为什么准确率不好用?

难度系数(5分制): 1
准确率定义: 分类正确样本占总体样本的比例 accuracy = n of correct / total;
失效原因: 训练集中各类样本数量极端不均匀(数据偏斜), 导致准确率不能客观评价算法性能;
假如我们预测某地区内人口年收入否达到50万美元,而实际训练数据中百分之八十人口未达到50万美元。如果总让分类器输出0,准确率也会达到80%;
假如我们预测某地区人口是否患癌症,人群中癌症患者是一个非常小的样本。同样的只让分类器输出否结果也会获得较高的准确率。
解决方法: 常用召回率,精确率结合来衡量分类模型性能;

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页