【机器学习百问】7.什么时候用欧式距离什么时候用余弦距离?

难度系数(5分制): 2

余弦相似度的定义: 余弦相似度为两个向量之间的夹角余弦值,取值范围[-1,1], 相同为1, 正交为0, 相反为-1。
在这里插入图片描述
余弦距离的定义: 余弦距离=1-余弦相似度;故取值范围为[0,2]。余弦距离用来衡量不同样本在空间中的关联程度。取值范围稳定,含义清晰。体现向量方向之间的相对差异。
欧式(欧几里得)距离定义: 衡量两点之间的直线距离。体现数值上的绝对差异。
在这里插入图片描述
低维度时表示两点之间的直线距离,高纬度时含义比较模糊,且取值范围不稳定。无统一的衡量标准。

适用场景:
余弦距离: 衡量方向关系时使用,比如衡量用户A(1,10)和B(10, 1000),如果用欧式距离衡量,则出现差距过大。但实际上两者在方向上相似,仅为数值差异,在电商中可体现为爱好相同但购物量不同。
欧式距离: 衡量绝对数值距离时使用。

由于各项目中使用样本特征向量不同,可根据被选择特征向量的分布特点及项目需求,从而选择衡量数值距离还是方向相关性。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页