动态规划——最长公共子序列(以[HAOI2010]为例)

题意:
字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij = yj。
例如X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。对给定的两个字符序列,求出他们最长的公共子序列长度,以及最长公共子序列个数

一.求最长公共子序列的长度(基础LCS问题)
首先从动态规划的角度来考虑:
所有问题被分解为子问题,子问题套子问题。
1.确定研究状态:最长公共子序列的长度
那么每一层的问题就转化求该层的***最长公共子序列的长度***。
2.确定研究问题的划分层次(如何划分子问题)。(循环变量所代表的意义及状态边界问题):当s1和s2的长度均为1时,结果是很容易判断的,所有很自然的想到用长度来对问题进行划分。长度小的子问题被包含在长度大的子问题中作为数据被调用。——>用两层循环(i,j)来进行。
3.确定状态转移方程:(重中之重,因为状态转移方程是否正确决定难题的攻克与否)同时,也是解决问题的核心。那么对于长度为i的s1和长度为j的s2。该状态下的子问题结果:dp[i][j]=?。
可以知道的是:分情况讨论:
(1).当S1[i]==S2[j]时,dp[i][j]可有三个来源:
当第i个和第j个参与最长公共子序列①:dp[i-1][j-1]+1;
当第i个和第j个不参与最长公共子序列②:dp[i-1][j]和dp[i][j-1]。
因为:dp[i-1][j-1]<=dp[i][j-1]<=dp[i-1][j-1]+1 所以,最终的答案是:
dp[i][j]=dp[i-1][j-1]+1
(2).当S1[i]!=S2[j]时,S1[i]与S2[j]不可能同时入选最长公共子序列,所以dp[i][j]只能从dp[i-1][j]和dp[i][j-1]中推得结果。根据 最长 的要求,和dp所储存的内容( s1的前i个字符组成的串s2的前j个字符组成的串所能形成的最长公共子序列的长度)得到:dp[i][j]=max(dp[i-1][j],dp[i][j-1]).
4.构造关键代码:

for (i=1;i<=s1.length();i++) 
for (j=1;j<=s2.length();j++) 
if (s1[i]==s2[j]) dp[i][j]=dp[i-1][j-1]+1; 
else dp[i][j]=max(dp[i
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值