numpy中randn与rand的区别

numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值

numpy.random.rand(d0, d1, …, dn) 的随机样本位于[0, 1)中

示例1:初始化权重

    W = np.random.randn(3, 5) * 0.1
[[-0.16234003 -0.07580205 -0.10382811  0.25060753 -0.05817828]
 [-0.18262613 -0.06957057 -0.15303875 -0.13716369 -0.06418708]
 [-0.02645418  0.02229534 -0.0667811   0.1462963   0.07969343]]

示例2:生成dropout前向传播使用的掩码:

	keep = 0.8
	A1 = np.array([[1 2 3],[4 5 6]])
	D1 = np.random.rand(A1.shape[0], A1.shape[1])  # 第一步 生成一个同维度矩阵,0-1之间的小数
	print(D1)
	print(--------------)
    D1 = D1 < keep_prob  # 第二步 判断新矩阵是否小于0.8,(80%的小于0.8),则有80%个1,20%个0
    print(D1)
[[0.67191464 0.31135066 0.66924756]
 [0.6942883  0.85228543 0.22187168]]
--------------
[[ True  True  True]
 [ True False  True]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值