numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值
numpy.random.rand(d0, d1, …, dn) 的随机样本位于[0, 1)中
示例1:初始化权重
W = np.random.randn(3, 5) * 0.1
[[-0.16234003 -0.07580205 -0.10382811 0.25060753 -0.05817828]
[-0.18262613 -0.06957057 -0.15303875 -0.13716369 -0.06418708]
[-0.02645418 0.02229534 -0.0667811 0.1462963 0.07969343]]
示例2:生成dropout前向传播使用的掩码:
keep = 0.8
A1 = np.array([[1 2 3],[4 5 6]])
D1 = np.random.rand(A1.shape[0], A1.shape[1]) # 第一步 生成一个同维度矩阵,0-1之间的小数
print(D1)
print(--------------)
D1 = D1 < keep_prob # 第二步 判断新矩阵是否小于0.8,(80%的小于0.8),则有80%个1,20%个0
print(D1)
[[0.67191464 0.31135066 0.66924756]
[0.6942883 0.85228543 0.22187168]]
--------------
[[ True True True]
[ True False True]]
8622

被折叠的 条评论
为什么被折叠?



