K-Means聚类算法

一、聚类与分类

1.1 什么是聚类

聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集成为一个“簇”。通过这样的划分,每个簇可能对应于一些潜在的概念(也就是类别),如“浅色瓜” “深色瓜”,“有籽瓜” “无籽瓜”,甚至“本地瓜” “外地瓜”等;需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇对应的概念语义由使用者来把握和命名

1.2 聚类和分类的区别?

聚类是无监督的学习算法,分类是有监督的学习算法。所谓有监督就是有已知标签的训练集(也就是说提前知道训练集里的数据属于哪个类别),机器学习算法在训练集上学习到相应的参数,构建模型,然后应用到测试集上。而聚类算法是没有标签的,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起

1.3 性能度量

聚类的目的是把相似的样本聚到一起,而将不相似的样本分开,类似于“物以类聚”,很直观的想法是同一个簇中的相似度要尽可能高,而簇与簇之间的相似度要尽可能的低。
性能度量大概可分为两类: 一是外部指标, 二是内部指标 。
外部指标:将聚类结果和某个“参考模型”进行比较。
内部指标:不利用任何参考模型,直接考察聚类结果。

二、K-Means算法

1.1 K-Means原理

对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大

1.2 K-Means定义

给定样本集D,k-means算法针对聚类所得簇划分C最小化平方误差
在这里插入图片描述
这条公式在一定程度上刻画了簇内样本围绕簇均值向量的紧密程度,E值越小则簇内样本相似度越高。
最小化上面的公式并不容易,找到它的最优解需考察样本集D内所有可能的簇划分,这是一个NP难问题

1.3 样例

下面以西瓜数据集4.0为例来演示k-means算法的学习过程。我们将编号为i的样本称为xi,这是一个包含“密度”与“含糖率”两个属性值的二维向量
在这里插入图片描述
假定簇数k=3,算法开始是随机选取三个样本x6,x12,x27作为初始均值向量,即
在这里插入图片描述
考察样本x1=(0.697;0.460),它与当前均值向量u1,u2,u3的距离分别是0.369,0.506,0.166,因此x1将被划入簇C3中。类似的,对数据集中所有的样本考察一遍后,可得当前簇划分为
在这里插入图片描述
于是,可从C1,C2,C3分别求出新的均值向量
在这里插入图片描述
更新当前均值向量后,不断重复上述过程,如下图所示,第五轮迭代产生的结果与第四轮迭代相同,于是算法停止,得到最终的簇划分
在这里插入图片描述

1.4 K-Means优缺点

优点:
简单,易于理解和实现;收敛快,一般仅需5-10次迭代即可,高效
缺点:
1,对K值得选取把握不同对结果有很大的不同
2,对于初始点的选取敏感,不同的随机初始点得到的聚类结果可能完全不同
3,对于不是凸的数据集比较难收敛
4,对噪点过于敏感,因为算法是根据基于均值的
5,结果不一定是全局最优,只能保证局部最优
6,对球形簇的分组效果较好,对非球型簇、不同尺寸、不同密度的簇分组效果不好。

三、K-Means与KNN区别

初学者会很容易就把K-Means和KNN搞混,其实两者的差别还是很大的。
K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。
当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(nearest neighbors)的思想。

四、代码实现

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
dataset = pd.read_csv('watermelon_4.csv', delimiter=",")
data = dataset.values

print(dataset)

import random
def distance(x1, x2):  # 计算距离
    return sum((x1-x2)**2)
def Kmeans(D,K,maxIter):
    m, n = np.shape(D)
    if K >= m:
        return D
    initSet = set()
    curK = K
    while(curK>0):  # 随机选取k个样本
        randomInt = random.randint(0, m-1)
        if randomInt not in initSet:
            curK -= 1
            initSet.add(randomInt)
    U = D[list(initSet), :]  # 均值向量,即质心
    C = np.zeros(m)
    curIter = maxIter  # 最大的迭代次数
    while curIter > 0:
        curIter -= 1
        # 计算样本到各均值向量的距离
        for i in range(m):
            p = 0
            minDistance = distance(D[i], U[0])
            for j in range(1, K):
                if distance(D[i], U[j]) < minDistance:
                    p = j
                    minDistance = distance(D[i], U[j])
            C[i] = p
        newU = np.zeros((K, n))
        cnt = np.zeros(K)

        for i in range(m):
            newU[int(C[i])] += D[i]
            cnt[int(C[i])] += 1
        changed = 0
        # 判断质心是否发生变化,如果发生变化则继续迭代,否则结束
        for i in range(K):
            newU[i] /= cnt[i]
            for j in range(n):
                if U[i, j] != newU[i, j]:
                    changed = 1
                    U[i, j] = newU[i, j]
        if changed == 0:
            return U, C, maxIter-curIter
    return U, C, maxIter-curIter

U, C, iter = Kmeans(data,3,10)

f1 = plt.figure(1)
plt.title('watermelon_4')
plt.xlabel('density')
plt.ylabel('ratio')
plt.scatter(data[:, 0], data[:, 1], marker='o', color='g', s=50)
plt.scatter(U[:, 0], U[:, 1], marker='o', color='r', s=100)
# plt.xlim(0,1)
# plt.ylim(0,1)
m, n = np.shape(data)
for i in range(m):
    plt.plot([data[i, 0], U[int(C[i]), 0]], [data[i, 1], U[int(C[i]), 1]], "c--", linewidth=0.3)
plt.show()

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值