Hive下数据仓库历史拉链表如何加工,分区键该如何选择

本文介绍了数据仓库中的历史拉链表加工,探讨了使用时间键代替代理键处理缓慢变化维的方法。详细阐述了查询、加工历史拉链表的方式,并对比分析了四种不同的分区策略,包括其优缺点。建议根据业务需求和资源消耗选择合适的分区方案,注意移除变化频繁的维度属性以优化存储效率。
摘要由CSDN通过智能技术生成

 

1 缓慢变化维

说到历史拉链表,首先得说下缓慢变化维。

在现实世界中,维度的属性并不是静态的,而是随着时间的变化而变化,这也体现了数据仓库的特点之一,是反映历史变化的。相对于数据增长较为快速的事实表,维度的变化是相对缓慢的。

在维度建模理论中,处理缓慢变化维有三种方式:

  1. 新的维度属性直接覆盖旧的维度属性,不保留历史数据;
  2. 增加新的维度行(需要生成代理键来支持),维度变化前的事实关联变化前的维度值,维度变化后的事实关联变化后的维度值。缺点是无法归一为变化前的维度值或者变化后的维度值进行统计;
  3. 增加维度列,即针对维度的某一属性时,在设计表时需要至少包含两列,新属性和旧属性。优点是可以根据业务需求进行不同的归一化处理,缺点是扩展性不好,保留的维度历史数据有限。

2 历史拉链表

而历史拉链存储恰恰是对第二种方式的一种升级,同样是以增加新的维度行来实现,不同的是使用时间键来代替代理键。时间键包含两个字段,开始时间和结束时间,一般以天为粒度保留变更的维度数据。

2.1 查询方式

  • 查询当前最新状态维度数据:select * from table_name where end_day = ‘30001231’
  • 查询某一天的维度状态数据:select * from table_name where start_day <= ‘20200201’ and end_day > '20200201'

2.2 加工方式

假设商品历史拉链

Hive是一个基于Hadoop的数据仓库架构​​,可以用于处理大数据量的结构化和半结构化数据拉链是一种常用于历史数据关联分析的技术。下面我将简要介绍如何在Hive中使用拉链来关联历史数据拉链是一种用于处理数据随时间变动的关联关系的设计方法。它通常包含两个重要的字段:生效日期和失效日期。生效日期示了某个数据的开始日期,失效日期示了该数据的结束日期。 在Hive中,我们可以使用窗口函数和联接操作来实现拉链历史数据关联。首先,我们需要在数据中添加生效日期和失效日期字段,并将历史数据按照日期排序。然后,我们可以使用窗口函数来为每一行数据分配一个唯一的行号,并根据行号对历史数据进行版本化。接下来,我们可以使用联接操作将历史数据和当前数据关联起来,以便进行历史数据的查询和分析。 例如,我们有一个学生student,其中包含学生的信息,还有一个历史变动student_history,用于记录学生信息的变动。我们可以使用拉链的方式将学生和学生历史变动进行关联。 首先,我们可以在student和student_history中添加生效日期和失效日期字段,并将数据按照日期排序。然后,我们使用窗口函数为每一行数据分配一个唯一的行号,并对学生历史变动进行版本化。 接下来,我们可以使用联接操作将学生和学生历史变动进行关联,以便查询某个时间点学生的信息以及变动情况。例如,我们可以查询某个日期范围内学生的姓名、年龄以及变动情况。 在Hive中,使用拉链来关联历史数据可以提供更加全面和准确的历史数据分析。通过使用窗口函数和联接操作,我们可以轻松地实现拉链历史数据关联。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值