(pytorch)基于Transformer的相关项目

本文介绍了如何使用torchtext库中的vocab功能构建词表,包括对原始语料进行分词、计数处理,以及如何设置词频阈值来优化词表。重点讨论了Transformer模型在翻译、分类和对联生成等任务中的应用。
摘要由CSDN通过智能技术生成

基于Transformer的翻译模型

基于Transformer的分类模型

基于Transformer的对联模型

利用torchtext.vocab构建词表

参考:还在手动构造词表?试试torchtext.vocab

  1. 对原始语料进行分词或者分字,即tokenize
  2. 利用Counter来对tokenize后的结果进行计数处理,并去掉出现频率小于某个阈值的词
  3. 根据计数结果分别建立一个字典和一个列表用于将词转换为索引以及将索引转换为词

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值